在建筑学领域,历史悠久的建筑风格的分类与研究是一个重要的分支,它不仅有助于我们理解和保护文化遗产,还能够帮助建筑师和设计师从传统中汲取灵感。本文所提到的“历史建筑风格分类数据集”显然是为了解决这一需求而设计的,它不仅是一个信息集合,更是一个研究工具,用于机器学习和深度学习模型的训练,特别是结合了YOLOv11的目标检测技术。YOLOv11(You Only Look Once版本11)是一种常用于实时对象检测的算法,其高效性和准确性在计算机视觉领域有广泛应用。 数据集中的建筑风格包含了中国传统的六大建筑派系:徽派、闽派、京派、苏派、晋派和川派。每一种建筑风格都有其独特的特点和历史背景,这些元素在数据集中得以体现。 徽派建筑以其精湛的雕刻艺术和砖雕、木雕、石雕“三雕”著称,常见于安徽等地。其装饰细腻精美,反映了徽商的富庶和品味。闽派建筑主要分布在福建地区,以砖木结构见长,它的特点是屋檐高挑、装饰精美,且大量使用了木材。京派建筑则以北京地区的官式建筑为代表,其建筑规模宏大、布局严谨,展现了皇家建筑的宏伟与庄重。苏派建筑以苏州园林为典型代表,其特点是精致典雅,造园艺术高超,追求自然与建筑的和谐共生。晋派建筑主要指山西一带的建筑,它以明清时期民居建筑为代表,注重雕刻装饰艺术,融合了北方建筑的雄浑和南方建筑的精致。川派建筑则以四川的吊脚楼等地方特色建筑为代表,其结构独特,适应了多山地形的特点。 该数据集的制作显然是一项费时费力的工作,它需要收集各个建筑派系的图像,并进行细致的标注,以适用于YOLOv11模型的训练。数据集的创建者所提到的辛苦费,其实是一种对于知识产权和劳动成果的合理报酬,这也反映了当前在学术界和数据科学领域对于知识产品价值的认可和尊重。 此外,数据集的用途广泛,不仅可以用于计算机视觉领域的研究和教学,还能广泛应用于历史建筑保护、城市规划、文化旅游等多个领域。例如,通过机器学习技术,可以对历史建筑进行自动化识别和分类,辅助于建筑修复、维护以及数字化存档。在文化旅游领域,可以开发智能导游系统,为游客提供关于历史建筑的详细信息和深度解读。 在处理和使用这类数据集时,研究人员需要遵守相关法律法规,尊重原始图像的版权,且不得用于非法用途。同时,对于数据集中的图像质量和标注准确性也有很高的要求,因为它们直接影响到模型训练的效果和最终的应用价值。 这个“历史建筑风格分类数据集”为我们提供了一个利用现代科技手段研究和传承中国传统文化的机会,通过对大量历史建筑图像的学习和分析,可以促进传统建筑艺术与现代科技的融合,推动文化遗产保护工作的现代化进程。
2025-06-24 15:58:20 923.38MB 历史建筑 目标检测
1
内容概要:本文详细介绍了利用Google Earth Engine (GEE) 进行Sentinel-2卫星数据处理与分类的全流程。首先,通过筛选特定区域(AOI)、时间范围和云覆盖度的数据,去除云层和阴影干扰,并计算云掩膜后的图像中值以提高质量。接着,对图像进行分割并选取关键波段和聚类信息,准备训练数据集,包括多种地表覆盖类型(如非正式定居点、植被、裸地、水体等)。然后,使用随机森林算法训练分类器,并对分割后的图像进行分类。此外,还进行了像素级别的分类作为对比。最后,将分类结果导出到Google Drive,并评估了模型的训练和验证精度。 适合人群:遥感数据分析人员、地理信息系统(GIS)从业者以及对地球观测数据处理感兴趣的科研人员和技术爱好者。 使用场景及目标:①掌握Sentinel-2数据的预处理方法,如去云、降噪等;②学习基于GEE平台的地物分类流程,包括样本准备、模型训练、结果评估等;③理解不同级别(对象级与像素级)分类的区别及其应用场景。 其他说明:本教程侧重于实际操作步骤,提供了完整的Python代码示例,帮助读者快速上手GEE平台上的遥感影像处理任务。同时,通过比较对象级和像素级分类的效果,可以更好地选择合适的分类方法。
1
这是一个垃圾分类数据集,格式为YOLO格式,14750张图像数据+14750张标签数据。YOLOv5。 垃圾类别: 一次性快餐盒 书籍纸张 充电宝 剩饭剩菜 包 垃圾桶 塑料器皿 塑料玩具 塑料衣架 大骨头 干电池 快递纸袋 插头电线 旧衣服 易拉罐 枕头 果皮果肉 毛绒玩具 污损塑料 污损用纸 洗护用品 烟蒂 牙签 玻璃器皿 砧板 筷子 纸盒纸箱 花盆 茶叶渣 菜帮菜叶 蛋壳 调料瓶 软膏 过期药物 酒瓶 金属厨具 金属器皿 金属食品罐 锅 陶瓷器皿 鞋 食用油桶 饮料瓶 鱼骨 在人工智能领域,目标检测技术是计算机视觉的重要组成部分,它的任务是在图像中识别并定位出一个或多个目标,并给出每个目标的类别。YOLO(You Only Look Once)是一种流行的目标检测算法,以其速度快、准确率高、易于训练和部署等优点被广泛应用。在本文中,我们关注的是一套特别的数据集,它专注于垃圾分类的任务,即通过机器学习模型对各种垃圾类别进行识别和分类。 该数据集包含了14750张图像数据及其对应的标签数据,共涉及29种垃圾类别。这些类别包括了日常生活中常见的废弃物,如一次性快餐盒、书籍纸张、充电宝、剩饭剩菜等。此外,还包括了多种塑料制品、电子废弃物、玻璃和金属物品,以及厨余垃圾等。每一张图像都标注有相应的垃圾类别,这些图像和标签共同构成了YOLO格式的数据集,适用于训练YOLOv5版本的目标检测模型。 YOLO格式的数据集要求每张图像对应一个文本文件,其中记录了图像中每个垃圾目标的位置信息(包括中心点坐标、宽度和高度)以及垃圾的类别。在训练过程中,YOLO算法会利用这些标注信息,通过反向传播的方式不断优化网络参数,以达到对垃圾图像准确分类和定位的目的。 在垃圾分类的场景下,使用YOLO算法及其数据集具有以下几个优势:YOLO算法的检测速度非常快,可以实现实时检测,这对于即时分类垃圾、提高垃圾处理效率具有重要意义;该算法的检测精度高,能够有效识别不同垃圾的目标,包括那些形状、颜色相似的目标;再者,YOLO模型的部署简单,可以轻松集成到各种智能设备中,如智能垃圾桶、垃圾回收机器人等,为垃圾分类和资源回收提供技术支持。 该垃圾分类数据集对于推动智能垃圾分类和环保事业的发展具有重大价值。通过这套数据集的训练,可以使智能系统更加精准地识别和分类不同类型的垃圾,从而为城市垃圾管理、资源循环利用等环保措施提供可靠的技术支撑。同时,随着技术的不断进步,这套数据集还可以进一步扩大和更新,以覆盖更多垃圾类别和更复杂的现实场景,进一步提升垃圾分类的智能化水平。
2025-06-19 10:50:40 840.15MB YOLO 垃圾分类
1
该数据最初是Abu Jwade Sanabel等人的工作,该小组从澳大利亚的一个真实农场收集了数据。 简述 来自澳大利亚的四种绵羊品种图像 数据描述 该数据最初是Abu Jwade Sanabel等人的工作,该小组从澳大利亚的一个真实农场收集了数据。此外,这些数据是根据CC BY 4.0许可从网络上抓取的,并在此处显示。 在农场起草时记录了来自四个绵羊品种的绵羊。捕获绵羊的单个帧按品种分组。有一个用于对齐绵羊图像的主文件夹,其中有一个用于四个品种图像的文件夹。 您是否可以训练准确度超过95%的分类模型?
2025-06-17 16:10:01 10.84MB 数据集
1
本数据集包含了大约1.3w条豆瓣短评,长评,微博,猫眼相关数据集的汇总,可用作电影情感分析,预测等任务,包含情感分类标签,(请注意:数据集中并非全部标签都为真实标签,由于一些评论缺失情感分类,因此使用了深度学习方式填充了标签,因此此数据集无缺失值。 属性说明: Comment:评论内容 Sentiment:情感分类,1-5,分别代表最差到最好 Datetime:评论发出时间 Location:评论发出地点 具体数据集样例: --------------------------------------------------------------------------------------------------------------------- Comment Sentiment Datetime Location 电影好好看,下次最来看一次,哪吒的语言太好听了。 2 2025/4/18 23:03 成都 好看,喜欢,非常喜欢 2 2025/4/18 23:02 崇州 ---------------------------------------------------------------------------------------------------------------------
2025-06-16 16:56:18 3.15MB 情感分类 数据集 深度学习
1
数据集包含100多种动物的特征 100 classes Animal Class rat vicuna antelope giraffe panda ... 可用作机器学习使用 源码地址:https://www.kaggle.com/datasets/justin900429/100-classes-of-different-animals
2025-06-15 17:05:51 21.96MB 数据集 机器学习
1
借助深度学习、卷积神经网络(CNN)等先进算法,图像识别技术实现了从图像信息的获取到理解的全面提升。近年来,这一技术已在医疗、交通、安防、工业生产等多个领域取得了颠覆性突破,不仅显著提升了社会生产效率,还深刻改变了人们的生活方式。葡萄叶片识别的实际应用场景。 1. 农业生产与种植管理 葡萄叶识别技术可以帮助农民快速、准确地识别葡萄的品种和生长状态。通过分类不同种类的葡萄叶,农民可以优化种植策略,合理分配资源(如肥料和水分),从而提高葡萄的产量和品质。此外,该技术还可以用于监测葡萄植株的生长周期,指导科学化管理。 2. 病虫害检测与诊断 通过对葡萄叶的图像进行分析,葡萄叶识别技术可以检测出叶片上是否存在病害或虫害的特征。例如,可以识别霜霉病、白粉病等常见葡萄病害的早期症状,及时提醒农民采取防治措施。这种技术可以大幅减少农药的使用量,提高生态友好性。 3. 食品加工与质量评估 在食品加工行业,葡萄叶是某些传统美食(如中东的葡萄叶包饭)的关键原料。葡萄叶识别技术可以用于区分不同品种的叶片,以确保其口感、大小和质量符合加工要求,从而提升加工产品的一致性和市场竞争力。 4. 葡萄品种的保护与追溯
2025-06-08 16:22:24 65.16MB 数据集 人工智能 图像分类
1
中草药是中华民族传统医药的重要组成部分,历史悠久,种类繁多,对许多疾病的预防和治疗有着显著的疗效。随着现代科技的发展,中草药的研究和应用也逐步向数据化、信息化方向发展。本文将详细介绍中草药20种分类数据集的相关知识点。 数据集作为一种集合了大量的信息和数据的资源,被广泛应用于机器学习、图像处理、药物研发等领域。中草药分类数据集,则是专为中草药的识别和分类而创建的,它通过收集和整理大量的中草药图片,并将它们进行科学的归类,为研究者和开发者提供了宝贵的研究素材。 该数据集包括了20种不同的中草药类别,每一种类都含有80到100张清晰的图片。这些图片通常包括植物的全株、叶子、花、果实等不同部位的照片,以确保分类时能覆盖到草药的各个特征层面。数据集的收集过程中,还需要考虑中草药的生长周期、采集环境、光照条件等因素,以保证图片的质量和多样性。 中草药分类数据集对于计算机视觉技术的研究具有重要的意义。通过应用深度学习算法,如卷积神经网络(CNN)等,可以训练出一个能够准确识别和分类中草药的模型。这不仅可以提高中草药识别的效率,还能辅助相关领域的科研人员进行深入研究。 此外,中草药分类数据集的应用领域非常广泛。在药物研发方面,它可以帮助科研人员快速识别并提取具有潜在药用价值的中草药;在医疗健康领域,通过分类中草药,可以为患者提供更加精准的药物推荐和治疗方案;在教育领域,这种数据集还可以作为教学资源,帮助学生更好地认识和理解中草药。 值得注意的是,中草药分类数据集的构建需要遵守一定的伦理和法律规定,保护知识产权和隐私权益。因此,在使用这些数据集进行研究和应用时,必须确保来源的合法性和适用性。 中草药20种分类数据集的出现,不仅推动了中草药学的数字化进程,而且为相关领域的技术进步和知识普及提供了重要的支持。随着数据集规模的不断扩大和算法的不断优化,我们有理由相信,中草药分类数据集将在未来发挥更大的作用,为人们的生活带来更多的福祉。
2025-05-15 00:04:13 83.22MB 数据集
1
数据集介绍 数据内容: 2021年中国软件杯大赛A4赛题团队自搜集数据,包含软件杯要求的99种林业有害生物的图像数据,具体有害生物信息见:http://www.cnsoftbei.com/plus/view.php?aid=588 ,包括有:黑蚱蝉,蟪蛄,蒙古寒蝉等99种生物,共近2000张图片,各生物种类数据数量基本平衡. 数据格式: 所有数据严格按照文件夹名称存放. 数据用途: 常用于图像分类,目标检测任务(需要手动标注) 林业有害生物分类数据集是一个专门针对林业领域内有害生物识别和分类问题而构建的图像数据集。该数据集由参与2021年中国软件杯大赛的A4赛题团队所搜集整理,旨在为相关领域的研究者和开发者提供一套丰富的图像资源,以便于他们开展机器学习、人工智能等相关技术的研究和应用。 数据集包含了99种不同的林业有害生物图像,每种生物大约有20张图像,总计接近2000张图片。这些图像覆盖了如黑蚱蝉、蟪蛄、蒙古寒蝉等多种常见的林业害虫。图像数据集的一个显著特点是,数据集中每种生物的图像数量大致相等,这为数据平衡的机器学习模型训练提供了基础。 数据集的格式设计遵循了严格的组织规范,所有的图像数据都按照生物种类进行分类存放于不同的文件夹中。这种格式的优点是便于用户快速定位所需的数据,同时也有助于在进行图像分类和目标检测等任务时,能够高效地对数据进行抽样和管理。 林业有害生物分类数据集的应用领域非常广泛,包括但不限于自动识别林业害虫、监测森林健康状况、智能预警森林病虫害的爆发等。由于数据集内图像数量较大且种类繁多,因此它特别适合用于图像分类和目标检测任务。利用该数据集进行机器学习模型的训练,可以帮助相关工作者和研究人员在面对实际林业问题时,快速准确地识别和分类不同的林业有害生物。 为了更好地利用这份数据集,开发者可能需要进行一些初步的数据预处理工作,包括图像的格式转换、大小调整、增强等,以适应不同的学习算法和任务需求。此外,由于数据集中的图像并未提供预标注,如果需要用于目标检测任务,开发者还需进行手动标注的工作,包括标记图像中害虫的位置、识别害虫的种类等,这将是一个相对耗时的工作。 总体来说,林业有害生物分类数据集对于推动林业领域的智能化管理具有重要意义。它不仅能够帮助研究人员更有效地开展相关领域的研究工作,还有助于提高林业管理的科技含量,加强森林生态系统的保护力度。
2025-05-08 19:32:24 104.44MB 数据集
1
40种垃圾分类 (一万七千多张图片)数据集,已打好标签,可用与yolov训练模型。
2025-04-17 09:39:05 655.58MB 深度学习 数据集
1