包含训练代码、预测代码、数据划分代码、网络代码等,采用pytorch框架所写。
2023-04-10 19:33:58 11KB pytorch 分类 网络 python
内容:常用高光谱分类数据集,包括常用的Indian pines\KSC\Purdue\DC\HOUSTON\Botswana\Salinas等,基本上写论文是够用的公开数据集; 使用方法:格式全部为mat格式,可以在Python和Matlab上使用; 使用建议:建议使用不同传感器的数据集来验证自己分类方法的有效性。
2023-02-09 03:26:12 980.35MB 遥感 高光谱数据集
1
摘要光谱特征波段的选取是植被高光谱分类识别的重要基础之一利用鄱阳湖种典型植被的实测高光谱数据在对数据进行预处理和分析的基础上提出了一种基于均值极差阈值法的光谱特
2022-12-15 22:35:28 1.28MB 光谱学 光谱特征 光谱特征 分类
1
包含训练代码、预测代码、数据划分代码、网络代码等,采用pytorch框架所写。 代码中包含3D卷积神经网络和支持向量机(SVM)、随机森林(RF)、K最邻近(KNN)这三个机器学习算法。可以随意组合为3DCNN-SVM、3DCNN-RF、3DCNN-KNN。代码清晰,便于理解。也可单独训练3DCNN或者机器学习。
高光谱图像分类,利用CNN,里面有全套的流程,包括数据处理,样本生成,测试,精度评价。
1
分类代码示例(C4.5、libsvm),帮助理解高光谱遥感图像的分类。
2022-07-15 09:34:43 24.93MB LibSVM matlab 高光谱分类
1
天文光谱分类算法在分布式环境下的应用研究.pdf
2022-01-01 12:01:30 239KB 分类算法 数据结构 算法 参考文献
基于三维卷积自动编码器的高光谱分类无监督空间光谱特征学习 通过,,,张治,,。 拟议框架 介绍 与传统的手工特征提取算法相比,使用深度神经网络(DNN)的特征学习技术表现出卓越的性能。 但是,DNN通常需要大量的训练样本来学习有效的特征,而在高光谱图像中很难获得有效的特征。 因此,在本文中,提出了一种使用三维卷积自动编码器(3D-CAE)的无监督空间光谱特征学习策略。 提出的3D-CAE仅包含3D或元素操作,例如3D卷积,3D池化和3D批处理归一化,以最大程度地探索空间光谱结构信息以进行特征提取。 还设计了一个配套的3D卷积解码器网络来重建输入模式,通过该模式,可以训练网络中涉及的所有参数而无需标记训练样本。 在多个基准高光谱数据集上的实验结果表明,我们提出的3D-CAE在提取空间光谱特征方面非常有效,不仅在传统的非监督特征提取算法方面表现出色,而且在分类应用中也优于许多监督特征提取算
2021-10-18 16:31:36 6.09MB Python
1
基于SVM对高光谱图像进行分类MATLAB仿真
2021-10-06 20:56:13 15.76MB SVM 光谱分类 matlab图像 光谱分类
使用tensorflow框架对高光谱图像进行识别、分类
2021-09-28 16:07:54 9KB 高光谱分类 dropmco