内容概要:本文介绍了基于FPGA实现的暗通道先验实时去雾算法。首先阐述了去雾的重要性和暗通道先验的基本原理,然后详细描述了算法的具体实现步骤,包括图像输入与预处理、暗通道估计、大气透射图估计与去雾处理、图像输出等环节。文中展示了关键代码片段,并强调了FPGA在并行计算和加速图像处理方面的优势。最后,文章提到了仿真实现和硬件部署的可能性,展望了未来的优化方向。 适合人群:从事图像处理、嵌入式系统开发的研究人员和技术人员,尤其是对FPGA和去雾算法感兴趣的开发者。 使用场景及目标:适用于需要高质量图像处理的应用场景,如自动驾驶、监控系统、增强现实等。目标是提升图像清晰度,改善系统性能。 其他说明:文章附带了完整的仿真文件、课程论文和PPT,可供进一步研究和学习。
2025-11-17 16:34:27 376KB
1
基于暗通道先验的图像去雾算法是一种有效的图像恢复技术,它能够从雾化图像中去除干扰,恢复出清晰的场景。该算法的核心思想在于利用暗通道先验知识来估计图像中的透射率,并通过这一估计值来达到去除雾气的目的。在无雾图像中,暗通道通常具有很低的强度值,基于这一事实,算法提出者通过大量的无雾图像数据统计分析,发现大多数非天空的场景像素在暗通道中的值往往在[0,16]的范围之内。利用这个规律,可以推断出带有雾气的图像中的暗通道在相同的强度区间内,进而推算出透射率。 透射率的准确估计对于图像去雾的效果至关重要。算法通过构建一个透射率模型,结合原始雾化图像,可以计算得到透射图,这个透射图反映了场景中各个部分的能见度。接着,利用大气散射模型结合透射图和暗通道特征,可以对原始图像进行处理,从而得到去雾后的图像。 本文除了介绍算法的理论基础和步骤之外,还特别关注了算法的硬件实现。Verilog作为一种广泛使用的硬件描述语言,非常适合用来实现图像处理算法,尤其是在FPGA(现场可编程门阵列)这类硬件平台上。使用Verilog对图像去雾算法进行硬件描述,可以让算法在FPGA上进行实时或接近实时的图像处理,这对于需要高响应速度的图像处理应用来说非常有价值。例如,在自动驾驶车辆的视觉系统中,快速准确地处理摄像机捕捉到的图像对于安全驾驶至关重要,FPGA实现的图像去雾算法可以在这方面发挥重要作用。 在硬件实现的过程中,Modelsim作为一种仿真工具,也扮演了不可或缺的角色。它允许设计者在将Verilog代码部署到实际硬件之前对其进行测试和验证,确保算法的正确性和效率。通过Modelsim进行仿真,可以发现并修正逻辑错误,优化代码性能,从而确保在FPGA上实现时能够达到预期的效果。 基于暗通道先验的图像去雾算法不仅在理论和算法层面具有创新性,而且其在硬件层面的实现也为图像处理领域提供了新的可能性。利用Verilog将该算法部署到FPGA平台,配合Modelsim的仿真验证,该技术的应用范围和效率得到了极大的提升。
2025-11-13 16:02:25 1.38MB FPGA Modelsim Verilog
1
内容概要:本文详细介绍了基于FPGA的图像去雾算法,尤其是暗通道先验法的具体实现方法及其优势。文中首先解释了选择FPGA进行图像去雾的原因,即相比传统的软件方案(如OpenCV),FPGA能够显著提高处理速度并支持实时处理。接着,作者深入探讨了暗通道先验算法的核心思想以及如何利用Verilog语言在FPGA上实现这一算法的关键步骤,包括求解三色通道最小值、大气光估计、透射率计算等环节的技术细节。此外,还提供了完整的仿真测试流程,从生成带有特定雾度的人造图像开始,到最后将FPGA输出的数据转换为可视化的图像展示,确保整个系统的可靠性和准确性。 适合人群:对FPGA开发有一定了解,希望深入了解图像处理领域的工程师和技术爱好者。 使用场景及目标:适用于需要快速高效的图像去雾解决方案的实际应用场景,如安防监控系统、自动驾驶车辆视觉识别等。通过学习本文提供的理论知识和技术手段,可以掌握如何构建高性能的图像去雾系统。 阅读建议:由于涉及到较多的专业术语和技术细节,建议读者提前熟悉FPGA基础知识、Verilog编程语言以及基本的图像处理概念。同时,可以通过实际动手实验来加深理解,尝试复现文中提到的各种功能模块。
2025-11-13 16:00:41 1.21MB
1
在人工智能和机器学习领域中,目标检测技术是计算机视觉的重要分支。它旨在通过算法自动识别和定位图像中的各种目标物体,并通常包括分类和定位两个任务。随着深度学习的快速发展,目标检测技术已经取得了显著的进展。然而,由于复杂场景和物体外观的多样性,目标检测仍然面临不少挑战,比如物体遮挡、小物体检测、复杂背景下的识别等。 在这些挑战中,先验知识的引入被认为是提升目标检测性能的有效手段之一。先验知识可以来源于多个渠道,包括但不限于领域知识、标注数据、相关任务的先验信息等。先验知识的引导能够帮助模型更好地理解和预测图像中的对象,特别是在数据有限或者特征提取困难的情况下,先验知识的引入能够显著提高目标检测的准确性。 先验知识引导的目标检测相关论文通常会探讨如何将先验知识融入到目标检测模型中,以及这种方式对检测性能的具体影响。这些论文可能会涉及多种不同的策略和方法,例如通过引入先验形状信息来增强模型对特定物体类别的识别能力,或者利用图像的上下文信息来改善检测结果。此外,一些研究可能关注于如何自动生成或学习先验知识,以此构建更为鲁棒的目标检测系统。 先验知识引导的目标检测研究通常需要大量的实验验证。这些研究不仅仅限于算法和模型的提出,还包括各种评估指标的设计和对比实验,以确保新提出的策略或方法在实际应用中的有效性和优越性。同时,这些论文也会提供详尽的理论分析和数学证明,支持其观点。 在实际应用中,目标检测技术已经被广泛应用于安防监控、自动驾驶、机器人视觉、医疗影像分析等多个领域。通过使用先验知识引导的目标检测技术,不仅可以提高系统的准确率,还能够提升算法的运行效率和适应性。 本篇论文可能会包含以下内容:深度学习在目标检测中的应用,先验知识的定义和分类,如何有效地集成先验知识到目标检测模型中,各种先验知识引导方法的比较,实验结果和性能分析,以及对目标检测未来发展方向的展望。 由于本篇论文的具体内容没有在文件中提供,所以以上内容均是对该论文可能涉及的知识点和主题进行的推测,具体内容还需查看实际的论文文件才能获得。
2025-10-23 15:17:55 306B 源码 完整源码
1
基于FPGA的暗通道先验图像去雾处理算法仿真研究——使用Quartus 13.0的挑战与改进方向,基于FPGA的暗通道先验图像去雾处理算法仿真与实现挑战——浓雾与天空区域处理优化,FPGA图像增强,基于FPGA的图像去雾处理,算法为暗通道先验,并在matlab上实现了算法的仿真,使用的软件为quartus13.0。 注意在FPGA上实现时,在浓雾区域和天空区域的处理效果不算太好。 ,FPGA图像增强; 基于FPGA的图像去雾处理; 算法为暗通道先验; MATLAB仿真; Quartus13.0; 浓雾区域处理效果不佳; 天空区域处理效果不佳。,基于FPGA的图像增强与去雾处理:暗通道先验算法的优化与仿真
2025-06-27 15:38:47 1.37MB 数据仓库
1
IPDiff 是一个基于蛋白质-配体相互作用先验引导的扩散模型,首次把配体-靶标蛋白相互作用引入到扩散模型的扩散和采样过程中,用于蛋白质(口袋)特异性的三维分子生成。来源于文章 《Protein-Ligand Interaction Prior for Binding-aware 3D Molecule Diffusion Models》。文章链接: https://openreview.net/forum?id=qH9nrMNTIW 。 针对原GitHub中代码的问题与报错,本文档对原代码进行了修改,包含了完整的 IPDiff 项目,包含测试体系、可运行(修正报错)、可训练的源代码,并标注了每一个代码修改的位置。 此代码包含了完整的 IPDiff 的使用方法,可以针对某个某个蛋白体系的特定口袋生成结合力强的分子,可以直接用于项目中,或者进行微调再训练。
2025-04-29 21:33:22 15.16MB 药物设计 扩散模型
1
从数据中学习结构是贝叶斯网络研究最重要的基本任务之一。 特别地,学习贝叶斯网络的可选结构是一个不确定的多项式时间(NP)难题。 为了解决这个问题,已经提出了许多启发式算法,并且其中一些在不同类型的先验知识的帮助下学习贝叶斯网络结构。 然而,现有算法对先验知识有一些限制,例如质量限制和使用限制。 这使得很难在这些算法中很好地利用先验知识。 在本文中,我们将先验知识引入了马尔可夫链蒙特卡洛(MCMC)算法,并提出了一种称为约束MCMC(C-MCMC)算法的算法来学习贝叶斯网络的结构。 定义了三种类型的先验知识:父节点的存在,父节点的不存在以及分布知识,包括边缘的条件概率分布(CPD)和节点的概率分布(PD)。 所有这些类型的先验知识都可以轻松地用在该算法中。 我们进行了广泛的实验,以证明所提出的方法C-MCMC的可行性和有效性。
2024-04-09 10:39:16 2.16MB 研究论文
1
该项目是通过。 可用脚本 在项目目录中,可以运行: yarn start 在开发模式下运行应用程序。 打开在浏览器中查看。 如果进行编辑,页面将重新加载。 您还将在控制台中看到任何棉绒错误。 yarn test 在交互式监视模式下启动测试运行程序。 有关更多信息,请参见关于的部分。 yarn build 构建生产到应用程序build文件夹。 它在生产模式下正确捆绑了React,并优化了构建以获得最佳性能。 最小化构建,文件名包含哈希。 您的应用已准备好进行部署! 有关更多信息,请参见有关的部分。 yarn eject 注意:这是单向操作。 eject ,您将无法返回! 如果您对构建工具和配置选择不满意,则可以随时eject 。 此命令将从项目中删除单个构建依赖项。 而是将所有配置文件和传递依赖项(webpack,Babel,ESLint等)直接复制到您的项目中,以便您完全
2024-02-08 23:36:08 354KB JavaScript
1
本文讨论了贝叶斯方法,用于在测试过程中估计和预测软件系统的可靠性。 针对软件故障,提出了由Musa-Okumoto(1984)软件可靠性模型引起的非均质泊松过程(NHPP)。 Musa-Okumoto NHPP可靠性模型由执行时间部分和日历时间部分两个部分组成,是软件可靠性分析中的一种流行模型。 软件可靠性模型的预测分析对于修改,调试和确定何时终止软件开发测试过程非常重要。 但是,文献中缺少对Musa-Okumoto(1984)NHPP模型的贝叶斯和古典预测分析。 本文讨论了与开发测试程序密切相关的单样本预测中的四个软件可靠性问题。 采用基于非信息先验的贝叶斯方法来为这些问题制定明确的解决方案。 给出了基于真实和模拟数据的示例,以说明已开发的理论预测结果。
1
何凯明博士2009年的论文(暗通道去雾)Single ImageHaze Removalusing Dark Channel Prior中的代码实现,可以直接运行的程序。
2023-04-17 20:09:45 9KB 暗通道 去雾
1