内容概要:本文介绍了基于V2G技术的新能源汽车车载双向OBC(On-Board Charger),PFC(功率因数校正),LLC(谐振变换器)以及V2G(Vehicle to Grid)双向充电桩的MATLAB仿真模型。该模型包括前级电路的双向AC/DC单相PWM整流器和后级电路的双向DC/DC CLLC谐振变换器,实现了3.5kW的仿真功率。正向变换时,单相交流电网向电动汽车输出DC360V电能;反向变换时,电动汽车向电网回馈能量。通过这种方式,不仅提高了电动汽车的能源利用率,还使电网更加智能和环保。 适合人群:从事新能源汽车技术研发的专业人士、高校相关专业的师生、对新能源汽车充电技术感兴趣的科研人员。 使用场景及目标:适用于研究和开发新能源汽车双向充电技术,特别是OBC、PFC、LLC和V2G技术的应用。目标是提升电动汽车的能源利用效率,促进智能电网的发展。 其他说明:文中提供了部分MATLAB代码示例,帮助读者理解和构建仿真模型。实际应用中涉及更复杂的电路设计和控制算法。
2025-12-26 22:52:58 1.18MB
1
内容概要:本文详细探讨了基于V2G(车到电网)技术的电动汽车双向OBC(车载充电机)的MATLAB仿真模型构建。系统分为前级双向AC/DC单相PWM整流器和后级双向DC/DC CLLC谐振变换器。前级电路实现单位功率因数的AC/DC转换,后级电路通过PFM控制实现高效双向DC/DC转换。文中还介绍了功率设置、仿真波形分析以及充放电模式切换的控制逻辑。通过该仿真模型,能够深入了解新能源汽车车载充电机的工作原理,为实际硬件设计提供理论支持。 适合人群:从事新能源汽车技术研发的工程师和技术爱好者,尤其是对电力电子和MATLAB仿真感兴趣的读者。 使用场景及目标:适用于希望掌握电动汽车双向OBC设计原理的研究人员和工程师。目标是通过仿真模型理解双向OBC的工作机制,优化参数配置,提高系统效率和稳定性。 其他说明:文中提供了详细的MATLAB代码片段和参数设置技巧,有助于读者快速上手并进行进一步的实验和改进。
2025-12-26 22:48:37 1.17MB
1
内容概要:本文详细介绍了3KW无线充电系统的双边LCC拓扑结构设计及其MATLAB Simulink仿真过程。系统采用750V输入电压,400V输出电压,传输功率为3KW。文中首先阐述了LCC拓扑的选择原因及其优点,接着深入探讨了参数计算方法,包括谐振频率、电感和电容的计算。随后,文章详细描述了开环控制用于启动阶段的软启动以及闭环控制通过PID调节实现的动态调整。此外,还讨论了仿真过程中遇到的问题及解决方案,如参数偏差、效率提升、负载突变应对等。最终,通过响应面法进行多目标优化,使系统在不同工况下表现出良好的性能。 适合人群:从事电力电子、无线充电系统设计的研究人员和技术人员,尤其是有一定MATLAB Simulink使用经验的工程师。 使用场景及目标:适用于研究和开发高效、稳定的无线充电系统,特别是在电动汽车无线充电领域的应用。目标是通过理论分析和仿真验证,优化系统参数,提高传输效率和稳定性。 其他说明:文中提供了详细的MATLAB代码片段和Simulink模型构建步骤,帮助读者更好地理解和实现该系统。同时,强调了实际调试中的注意事项,如参数精度、寄生参数的影响等。
2025-12-26 17:07:16 422KB
1
"LCC-LCC无线充电系统:恒流恒压闭环移相控制仿真与优化研究","LCC-LCC无线充电系统:恒流恒压闭环移相控制仿真与优化研究",LCC-LCC无线充电恒流 恒压闭环移相控制仿真 Simulink仿真模型,LCC-LCC谐振补偿拓扑,闭环移相控制 1. 输入直流电压350V,负载为切电阻,分别为50-60-70Ω,最大功率3.4kW,最大效率为93.6%。 2. 闭环PI控制:设定值与反馈值的差通过PI环节,输出控制量限幅至0到1之间,控制逆变电路移相占空比。 3. 设置恒压值350V,恒流值7A。 ,LCC-LCC无线充电; 恒流恒压闭环控制; 移相控制仿真; PI控制; 仿真模型; 效率93.6%; 输入直流电压350V; 逆变电路。,基于LCC-LCC拓扑的无线充电恒流恒压闭环控制仿真研究
2025-12-26 17:04:24 262KB
1
LCC-LCC无线充电系统的恒流恒压闭环移相控制仿真模型及其优化方法。该系统基于LCC-LCC谐振补偿拓扑,利用Simulink仿真平台实现了对无线充电系统的建模与控制。文中具体阐述了系统的输入参数(如350V直流电压)、负载情况(50-70Ω切换电阻),以及最大功率和效率的表现。重点讨论了闭环PI控制策略的应用,通过设定值与反馈值的差值计算,经由PI环节处理后输出控制量,进而调整逆变电路的移相占空比,确保输出电压和电流的稳定性。此外,还设定了恒压值350V和恒流值7A,使系统能够在不同负载条件下维持稳定输出。最后,提供了部分Matlab代码片段展示PI控制器的工作流程。 适合人群:从事电力电子、控制系统设计的研究人员和技术人员,尤其是关注无线充电技术和Simulink仿真的专业人士。 使用场景及目标:适用于希望深入了解LCC-LCC无线充电系统内部机制的人群,旨在帮助他们掌握恒流恒压闭环移相控制的具体实现方法,提升对无线充电技术的理解和应用能力。 其他说明:文章不仅涵盖了理论分析,还包括具体的仿真模型构建步骤和代码实例,有助于读者更好地理解和复现实验结果。
2025-12-26 17:01:45 515KB
1
usb供电,充电,电源管理ppt,要=有需要的朋友可以用作参考
2025-12-23 19:42:23 7.81MB usb供电 电源管理
1
目前国内外矿用重型卡车24 V供电系统均采用蓄电池组供电,而矿用重型卡车蓄电池组的充电完全依靠独立的24 V充电机进行。24 V充电机是矿用重型卡车充电系统的核心装备,而目前哈尔乌素露天煤矿尚未有矿用重型卡车充电机专业检测装置,只能通过装车进行测试是否完好,严重地降低了充电机维修效率,充电机测试平台的制作有效的提升了矿用重型卡车充电机检修效率。
2025-12-23 16:46:07 140KB 行业研究
1
内容概要:本文基于Multisim仿真平台,深入解析电磁感应式无线充电系统的设计与优化过程。从发射端高频振荡电路构建、LC谐振匹配、线圈参数设置,到接收端整流滤波及负载动态检测电路设计,系统阐述了仿真中的关键环节。重点分析了频率匹配、耦合距离对传输效率的影响,并提出通过可变电容调节实现最优功率输出的方法。同时指出仿真与实际硬件实现之间的差异,强调寄生参数与器件损耗的考量。 适合人群:具备模拟电路基础、熟悉Multisim仿真工具,从事无线充电或电力电子方向的1-3年经验研发人员。 使用场景及目标:①掌握电磁感应无线充电系统的Multisim建模与仿真方法;②理解谐振频率匹配、线圈耦合与能量传输效率的关系;③学习接收端整流优化与自动断电控制电路设计。 阅读建议:建议结合仿真软件动手复现文中电路,重点关注NE555振荡器参数、LC谐振配置及示波器波形分析,同时注意二极管选型与MOSFET控制逻辑的实现细节。
2025-12-23 13:22:15 662KB
1
电磁感应式无线充电技术的Multisim仿真原理图及其优化方法。首先解释了基本的硬件架构,包括发射端的高频振荡电路和接收端的整流电路的设计。文中提到使用NE555定时器构建方波发生器,并对线圈参数进行了具体设定,确保互感系数达标。针对接收端容易出现的波形畸变问题,推荐采用肖特基二极管进行改进。此外,还探讨了传输距离对功率的影响以及如何通过调节电容来优化性能。对于高级应用,提出了加入负载动态检测电路的方法,利用LM393比较器监控输出电压并控制MOSFET通断。最后强调了仿真过程中需要注意的实际问题,如寄生电容和开关损耗等。 适合人群:对无线充电技术和电子电路设计感兴趣的工程师和技术爱好者。 使用场景及目标:适用于希望深入了解电磁感应式无线充电原理并在Multisim环境中进行仿真的技术人员。目标是掌握从基础电路搭建到复杂功能实现的全过程,提高无线充电系统的效率和稳定性。 其他说明:文中提供了具体的元件选择建议和SPICE代码片段,有助于读者快速上手实践。同时提醒读者注意仿真与实际焊接之间的差异,为后续实物制作打下良好基础。
2025-12-23 13:12:25 415KB
1
在现代的移动互联网时代,微信小程序已经成为一种流行的应用平台,为用户提供了便捷的服务和应用体验。本文将详细介绍一款基于java语言和SpringBoot框架的后端服务,以及采用Vue和uniapp前端技术开发的共享充电宝微信小程序。该应用主要面向需要临时充电服务的移动设备用户,特别是在外出时电池耗尽的情况。 后端服务采用了java作为主要开发语言,Java语言以其跨平台、面向对象和多线程处理能力强的特点广泛应用于企业级服务开发中。在本项目中,后端开发使用了SpringBoot框架,这是一个简化了Spring应用的初始搭建以及开发过程的框架。SpringBoot能够快速开发出独立的、生产级别的基于Spring框架的应用,它易于配置,且能自动配置Spring,大大提高了开发效率和项目的构建速度。 前端则采用了Vue.js框架,Vue是一种构建用户界面的渐进式JavaScript框架,核心库只关注视图层,易于上手,而且与其它库或已有项目整合也很容易。Vue的数据驱动视图的方式,使得前端开发更加简洁高效。uniapp作为开发工具,可以开发出兼容iOS、Android、以及各种小程序的统一代码,提高了代码的复用率和开发效率。 整个共享充电宝微信小程序的开发过程,遵循了现代软件开发的MVC(Model-View-Controller)模式,后端负责数据处理(Model)和业务逻辑控制(Controller),而前端则负责展示界面(View)。这样的架构模式使得程序结构清晰,便于后期的维护和扩展。 在功能实现方面,该小程序包含了用户注册登录、充电宝租借、归还、支付、订单管理等核心功能。用户可以通过微信快速注册和登录,查找附近的充电宝机柜,进行充电宝的租借操作。在归还充电宝时,系统会根据租借时长和充电宝状态自动计算费用,并支持多种在线支付方式完成支付。用户还可以查看和管理自己的历史租借订单,以及查看机柜状态和地图定位等功能。 另外,为了保证服务的稳定性和数据的安全性,该小程序在后端实现了多种数据校验和安全措施。比如使用HTTPS协议保证数据传输安全,以及在数据库设计时采用合理的权限控制和数据加密策略,避免数据泄露的风险。 在技术扩展方面,该小程序预留了与第三方应用的接口,方便将来与其他服务如地图服务、支付服务等进行数据交互和功能集成。同时,小程序前端也采用了模块化设计,可以快速响应市场变化和用户需求,进行功能迭代和界面优化。 该共享充电宝微信小程序的开发案例,不仅展示了一款成功的微信小程序的开发流程和架构设计,也为其他开发者提供了实际的开发经验和参考。对于企业来说,开发类似的小程序能够快速响应市场变化,占领市场份额,提升企业竞争力。
2025-12-18 22:10:11 459KB
1