当前电子鼻对有毒气体的识别存在数据量少,训练生成的神经网络映射能力差等问题。本文以甲醛和甲醇为目标气体,采用自制的气敏传感器对甲醛和甲醇进行数据采集,并对采集到的数据进行滤波和平滑处理,以提取不同传感器对目标气体的响应值。依据准则函数生成伪随机数,并建立伪随机特征值矩阵以扩大有效数据量。利用主成分分析 (PCA)法对特征值进行降维处理,选择贡献率大的主元成分作为反向传播(BP)神经网络的输入向量,构造PCA-BP神经网络。分别用实测特征值矩阵和伪随机特征值矩阵训练PCA-BP神经网络,通过对比分析两个网络得出,实测特征值矩阵的识别率为92%,而伪随机特征值矩阵的识别率为97%。结果表明,伪随机特征值矩阵能有效提高PCA-BP神经网络的映射能力,提高识别正确率。
2021-06-02 15:15:22 5.41MB 测量 模式识别 伪随机特 反向传播
1