基于PCA-BP神经网络对甲醛和甲醇的识别研究

上传者: 38618315 | 上传时间: 2021-06-02 15:15:22 | 文件大小: 5.41MB | 文件类型: PDF
当前电子鼻对有毒气体的识别存在数据量少,训练生成的神经网络映射能力差等问题。本文以甲醛和甲醇为目标气体,采用自制的气敏传感器对甲醛和甲醇进行数据采集,并对采集到的数据进行滤波和平滑处理,以提取不同传感器对目标气体的响应值。依据准则函数生成伪随机数,并建立伪随机特征值矩阵以扩大有效数据量。利用主成分分析 (PCA)法对特征值进行降维处理,选择贡献率大的主元成分作为反向传播(BP)神经网络的输入向量,构造PCA-BP神经网络。分别用实测特征值矩阵和伪随机特征值矩阵训练PCA-BP神经网络,通过对比分析两个网络得出,实测特征值矩阵的识别率为92%,而伪随机特征值矩阵的识别率为97%。结果表明,伪随机特征值矩阵能有效提高PCA-BP神经网络的映射能力,提高识别正确率。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明