【自平衡小车】是一种基于微控制器(如STM32)和传感器技术的智能设备,其核心功能是通过实时调整自身姿态,保持在直立状态。这种技术常见于电动滑板车、独轮车和机器人等领域。STM32是意法半导体推出的一种高性能、低功耗的32位微控制器,广泛应用在各种嵌入式系统中。 在这个项目中,STM32作为主要控制器,负责处理从传感器获取的数据,并控制电机以实现自平衡。【mpu6050】是一款六轴陀螺仪和加速度计组合芯片,能够检测小车的角速度和线性加速度,为PID(比例-积分-微分)算法提供必要的输入数据。 PID算法是自动控制系统中常见的控制策略,用于将设定值与实际值进行比较并计算出误差,然后根据误差的变化趋势调整电机的转速。在【PID算法】中,比例项响应当前误差,积分项考虑过去误差的积累,微分项预测未来误差,三者结合可以实现快速且稳定的控制效果。 【直流减速电机】是小车的动力来源,它结合了直流电机的高效率和齿轮箱的减速增扭特性,确保小车在各种负载下都能平稳运行。电机控制通常涉及脉宽调制(PWM),通过改变PWM信号的占空比来调节电机转速。 【FWLIB】、【SYSTEM】、【CORE】、【iic】、【motion_driver-5.1.2】、【OBJ】、【USER】、【self_balancing】和【HARDWARE】是项目中的不同组件或目录: 1. 【FWLIB】可能包含固件库,是STM32开发中常用的软件包,提供底层硬件接口函数。 2. 【SYSTEM】可能包含系统配置文件,如时钟设置、中断配置等。 3. 【CORE】可能是STM32微控制器的核心功能库。 4. 【iic】可能包含了I2C通信协议的驱动代码,用于与mpu6050等外设通信。 5. 【motion_driver-5.1.2】可能是电机驱动库,提供了电机控制所需的函数。 6. 【OBJ】通常包含编译后的对象文件,是编译过程的中间产物。 7. 【USER】可能包含用户自定义的源代码,如主循环、控制算法等。 8. 【self_balancing】直接对应自平衡算法的实现,可能包括PID控制器的代码。 9. 【HARDWARE】可能包含了硬件相关的配置文件,如电路原理图、PCB布局等。 理解这些关键组件和算法对于初学者掌握自平衡小车的开发至关重要。通过学习和实践这个项目,不仅可以深入理解STM32的使用,还能掌握传感器数据处理、电机控制以及PID算法的实际应用。同时,对于嵌入式系统的整体设计流程和调试技巧也会有更直观的认识。
2025-10-29 10:29:05 32.48MB 自平衡小车 STM32
1
在探究轴对称问题的平衡方程时,通常会涉及复杂的数学运算和物理模型。1945年,苏联数学家Aлекcaдaров提出了一种复变函数理论,即Aлекcaдaров复变公式,它为处理这类问题提供了有效的手段。然而,北京大学力学与工程科学系的高阳王敏中在2005年的研究中提出了一种全新的方法——Abel变换——来处理无旋转轴对称问题的平衡方程。Abel变换是一种积分变换,它在数学领域有着广泛的应用,尤其是在函数分析和微分方程的研究中。 在本研究中,高阳王敏中利用Abel变换将无旋转的轴对称问题的平衡方程转换为平面应变问题的平衡方程。这一转换过程是直接的,无需借助Aлекcaдaров复变公式。这样的方法简化了求解过程,使问题的物理本质更加明确。通过这一转换,作者成功地证明了任意轴对称问题都可以被视为平面问题经过旋转产生的。 在传统的力学分析中,轴对称问题是指在几何和物理条件上只与旋转角有关,且与旋转角度无关的性质。例如,在轴对称的圆柱体中,任意截面都是相同的,这样的体在分析力学问题时大大简化了模型。而平面应变问题,则是指物体变形后,物体的任意截面上的点沿某一方向的位移为零的模型。这类问题在工程结构分析中是经常遇到的,比如薄板或者长杆的弯曲问题。 研究中提到的Abel变换本身是一种特殊类型的积分变换,经常用在求解线性常微分方程和积分方程中。在本研究的背景下,Abel变换成为连接轴对称问题和平面应变问题之间的桥梁,它将一个领域的物理量转换到另一个领域,使得原本复杂的轴对称问题能够用较为简单的平面应变问题来描述和分析。 此项研究的意义在于,它不仅提供了一种新的解决轴对称问题的方法,更重要的是,它为理解轴对称问题提供了新的视角。这种视角有助于深入研究物体在不同条件下的变形和受力情况,从而对于设计和工程实践有着重要的指导意义。 在研究中所采用的Abel变换方法,与Aлекcaдaров复变公式相比,减少了计算的复杂性,并且由于数学工具的普适性,也更易于被理解和应用。这为研究者们提供了一个全新的工具,去分析和解决在材料科学、土木工程和航空航天等领域的复杂对称性问题。 最终,该研究不仅在理论上有所突破,而且具有很高的实际应用价值。通过Abel变换,研究者能够更有效地解决现实世界中的物理和工程问题,同时也为轴对称性问题的研究领域引入了新的数学方法和概念。这些成就,无论是对于学术研究还是对于工程应用,都具有长远的影响。
2025-10-21 21:19:32 1.5MB 自然科学 论文
1
项目概览 这是一款高性能双轮自平衡机器人开发框架,以STM32F103C8T6微控制器为核心,融合嵌入式开发、控制算法与物联网技术,适用于机器人开发学习、毕业设计及智能硬件原型验证 。资源包包含完整的硬件设计文档、多版本控制程序(PID/LQR/串级PID)及配套上位机调试工具,支持蓝牙遥控、超声波避障等扩展功能 。 核心技术亮点 1. ​颠覆性硬件架构​ ​主控芯片​:ARM Cortex-M3内核STM32F103C8T6(72MHz主频,64KB Flash),专为实时控制优化 ​传感器系统​:MPU6050六轴姿态传感器(±2000°/s陀螺仪+±2g加速度计),集成DMP姿态解算算法 ​动力驱动​:TB6612FNG双通道驱动模块(1.2A持续电流),效率比传统L298N提升40% ​人机交互​:0.96寸OLED显示PID参数/倾角数据,HC-05蓝牙支持手机APP遥控 2. ​智能控制算法库​ ​经典PID​:直立环+速度环双闭环控制,响应时间<50ms ​进阶LQR​:线性二次调节器实现最优控制,稳定性提升30% ​混合串级PID​:内环速度控制(精度±0.5°)与外环平衡控制协同工作 ​抗干扰设计​:卡尔曼滤波算法消除传感器噪声 3. ​模块化扩展接口​ 预留超声波、红外循迹、语音控制接口 支持ROS机器人操作系统二次开发 兼容3S航模锂电池(12.6V)与Type-C供电双模式
2025-10-21 19:44:08 9.26MB stm32平衡车
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-10-18 15:46:50 3.05MB matlab
1
锁相环纯代码(C语言),不平衡电压下的锁相环,采用双二阶广义积分器(DSOGI-PLL),整个系统由simulink中的s-function模块进行编写,采用C语言进行编写,包括整个系统离散化,PI离散化。 1.系统离散化方法 2.锁相环以及正负序分离原理 3.通过stm32f407进行了验证,锁相精度较高,代码可以直接进行移植到ARM或者DSP中 支持simulink2022以下版本,联系跟我说什么版本,我给转成你需要的版本,因s-function是simulink中比较复杂的插件,故需要满足2017以上版本。
2025-10-10 09:03:43 338KB stm32
1
通过建立东海生态系统ECOPATH模型,并将大型水母作为一个独立的功能组,从能量平衡的角度探讨近年来东海大型水母爆发对生态系统的影响,并在此基础上提出抑制大型水母爆发加剧的控制机制的假说。模型分析结果表明:大型水母对中上层生物资源普遍具有显著不利影响;在大型水母、浮游动物和鲳鱼等小型中上层鱼类之间可能存在一个由大型水母爆发引发的生态系统中上层能量反馈循环;大型水母爆发初期将破坏生态系统中上层能量平衡;浮游动物生物量的波动可能是抑制大型水母爆发加剧的自然控制机制之一。
2025-10-09 21:38:48 581KB 自然科学 论文
1
内容概要:本文详细探讨了一阶倒立摆控制技术,特别是通过MATLAB仿真实验对LQR控制、PD控制和MPC模型预测控制这三种方法进行了对比研究。文中介绍了倒立摆系统的背景和基本原理,重点阐述了每种控制方法的工作机制及其优缺点。实验结果显示,LQR控制在处理一阶倒立摆系统的起摆和平衡控制方面表现出色,具有良好的稳定性和较小的超调量。此外,文章还提供了相关参考文献,帮助读者进一步深入了解这一领域的研究。 适合人群:对自动控制理论感兴趣的研究人员和技术爱好者,尤其是希望了解倒立摆控制技术和MATLAB仿真的读者。 使用场景及目标:适用于希望掌握不同控制方法在倒立摆系统中应用效果的人群,旨在通过对比分析找到最适合特定应用场景的控制策略。 其他说明:文章不仅限于理论介绍,还包括具体的MATLAB仿真实验步骤,使读者能够动手实践并验证各种控制方法的实际表现。
2025-10-09 01:17:57 987KB MATLAB 倒立摆系统
1
三电平NPC逆变器及其与SVPWM算法的结合,重点探讨了如何利用Matlab/Simulink进行仿真。文章首先概述了三电平NPC逆变器的工作原理,指出其相较于传统两电平逆变器的优势,如更高的电压利用率和更低的开关损耗。随后,深入讲解了SVPWM算法的作用机制,强调其在减少谐波失真和提升电能质量方面的有效性。接着,通过具体步骤展示了如何在Matlab/Simulink中构建三电平NPC逆变器模型,并运用SVPWM算法进行调制。最后,通过对仿真结果的分析,得出三电平NPC逆变器与SVPWM算法结合可以显著改善电能质量和降低谐波失真的结论。 适合人群:对电力电子技术感兴趣的工程技术人员、研究人员及高校相关专业学生。 使用场景及目标:适用于希望深入了解三电平NPC逆变器和SVPWM算法原理及其实现方法的人群,旨在帮助他们掌握逆变器的设计和仿真技巧,为实际项目提供理论支持和技术指导。 其他说明:文中还附有简单的SVPWM算法代码片段,便于读者理解和实践。此外,强调了Matlab/Simulink作为强大仿真工具的价值,有助于加速逆变器设计和算法验证过程。
2025-10-02 19:46:19 259KB
1
使用Pandat软件对Fe-Ni-C三元合金在1000K温度下的准平衡等温截面相图进行计算的方法和步骤。文章首先解释了准平衡的概念及其应用场景,特别是当碳作为快速扩散的移动成分时的情况。接着展示了具体的Python代码实现,包括定义系统、设置准平衡条件以及计算并可视化等温截面相图。文中还提到了一些常见的错误避免技巧,如正确选择温度单位和活度参数,并强调了准平衡相图在实际工程中的重要性,特别是在设计表面硬化处理工艺时的应用。 适合人群:从事材料科学尤其是金属材料研究的专业人士,以及对相图计算感兴趣的科研工作者。 使用场景及目标:适用于需要理解和预测特定条件下合金行为的研究项目,帮助材料工程师优化合金配方和处理工艺,提高产品性能。 阅读建议:读者可以通过跟随文中的具体操作步骤,在自己的环境中重现计算过程,从而更好地掌握Pandat软件的使用方法和准平衡相图的意义。同时注意文中提到的技术细节和注意事项,确保计算结果的准确性。
2025-10-02 15:49:45 189KB
1
三相VIENNA整流器仿真(全网独一份) matlab仿真 T型vienna整流器仿真 双闭环PI控制,中点电位平衡控制,SPWM调制,三相锁相环。 图3为三相电流波形,图4THD为1.01%,电感仅为2mL。 图4直流侧电压波形,能准确跟踪给定值750V,图5为直流母线侧上下电容电压,中点电位波动极小。 功率因数为99%以上。 三相VIENNA整流器仿真是一种电力电子设备仿真技术,其特点是具有高性能的电能转换能力。VIENNA整流器在电子技术中扮演着重要的角色,特别是在工业应用中,它对提高能效和减少对电网的污染起着至关重要的作用。本文将从几个方面深入探讨三相VIENNA整流器仿真的工作原理、性能特点以及在电子技术中的应用价值。 三相VIENNA整流器仿真在模拟和优化整流器性能方面具有独特优势。仿真可以帮助工程师在设计阶段预测和评估整流器的性能,包括其在不同负载和操作条件下的效率、稳定性以及电磁兼容性。仿真技术可以提前发现设计缺陷,减少实际制造和测试阶段的时间和成本。 在本案例中,三相VIENNA整流器采用了双闭环PI控制策略。PI控制,即比例-积分控制,是一种常见的反馈控制方法。通过调节比例增益和积分增益,控制系统可以快速响应负载变化,保证输出电压和电流的稳定性。双闭环PI控制意味着系统内部有两个闭环反馈回路,分别控制电流和电压,这使得整流器能够在变化的工况下保持更稳定的输出性能。 此外,整流器还包括了中点电位平衡控制。在三相VIENNA整流器中,中点电位的稳定性对整个系统的安全运行至关重要。由于不平衡的负载或者制造误差,中点电位可能出现偏差,这会导致电容电压的不均衡,进而影响整流器的正常工作。因此,中点电位平衡控制能够实时监测和调整中点电位,确保系统的稳定运行。 SPWM(正弦脉宽调制)调制是另一种关键技术。它通过调整开关器件的开关频率和占空比,将正弦波电压转换为脉冲宽度调制的波形,从而有效地控制交流侧和直流侧的能量传递。SPWM调制技术可以显著降低输出电流的谐波含量,提高整流器的电能质量。 为了进一步提升性能,三相VIENNA整流器还配置了三相锁相环。锁相环是电子系统中用于实现相位同步的电路或算法,它能够确保输出电压的频率和相位与输入电压同步,这对于提高整流器的动态响应和稳定性能至关重要。 从给出的仿真结果来看,图3中展示的三相电流波形表明电流波形接近正弦波,而且谐波失真度(THD)仅为1.01%,说明整流器具有良好的电流谐波抑制能力。电感的大小仅为2mH,这表明该仿真模型采用了小型化的电感设计,有助于缩小整流器的体积和重量。 直流侧电压波形能够准确跟踪给定值750V,说明整流器具备良好的电压稳定性。图5展示了直流母线侧上下电容电压,中点电位波动极小,这一特性对于提高整个系统的稳定性和可靠性具有重要意义。此外,功率因数高达99%以上,这说明整流器能够在提供有效功率的同时,大大减少无功功率的损耗,从而提升能源的利用效率。 三相VIENNA整流器仿真不仅展现出优异的性能指标,还具备了高度的控制灵活性和优化潜力。通过深入分析仿真结果,我们能够了解到该仿真模型在电能转换和管理方面的巨大优势。它不仅为工程师提供了一个强大的设计和测试平台,也展示了当前电力电子技术的最新进展。
2025-09-26 16:19:17 610KB gulp
1