我们认为,仅采用专利的分类号数量并不能准确区分出一项专利所包含分类号之间的内部差异,反而会对专利质量的测度产生偏误。例如,一项专利共有三个分类号A01 B02/00、A01 B02/ 10、A01 B02/20,而另一项专利也有三个分类号:A01 B02 /00、A02B13/00 B35D13/20,这两项专利虽然专利分类号数量相同,但由于第一项专利只利用了A01 B02的一个大组信息,而第二项专利则利用了A01 B02、A02B13、B35D13这三个大组信息,显然第二项专利所运用的知识宽度要大于前者,因此,其专利质量相应也更高。为了尽量减少这一偏误,参照产业集中度的测算思路,该项指标采取大组层面的赫芬达尔一赫希曼指数的逻辑思路对其进行加权,企业专利知识宽度的具体计算方法为
其中,a表示专利分类号中各大组分类所占比重。可以看出,越大,各个大组层面的专利分类号之间的差异越大,即表明企业创造专利所运用的知识宽度越大,其专利质量可能就表现为越高。
2022-04-19 19:03:53
277.75MB
云计算