这段代码中,Conv1D是用于Attention层中的一维卷积操作。在Transformer中的Attention层中,输入序列和输出序列都是一维的。在自注意力机制中,为了计算每个位置和其他位置之间的相似度,需要将输入序列和输出序列进行一维卷积操作。
2024-03-23 14:39:41 12KB transformer
1
一维卷积神经网络,cnn,回归预测,多输入,单输出,基于matlab,替换数据和特征个数即可,拿来直接使用。分为清空环境变量、导入数据、划分训练集和测试集、数据平铺、构造网络结构、参数设置、训练模型、均方根误差、绘制网络分析图、绘图、相关指标计算等几个模块,各个模块均标有备注,直接替换数据即可使用,用于新手学习深度学习算法非常好
1
为了进一步提高点云图像船舶分类方法的分类准确率,提出了一种基于三维卷积神经网络(3D CNN)的点云图像船舶分类方法。首先采用密度网格方法将点云图像转为体素网格图像,将体素网格图像作为3D CNN的输入对象;接着通过设计的6层3D CNN提取体素网格图像的高水平特征,捕捉结构信息;最后在输出层利用Softmax函数进行分类,得到最终的分类结果。实验结果表明,在自建的点云图像船舶数据集上,所提方法的分类准确率达到了96.14%,比3D ShapeNets方法和VoxNet方法分别提高了5.97%和2.46%。在悉尼城市目标数据集上,与现有一些方法相比,所提方法的分类准确率较高。这些结果均证明所提方法具有良好的分类性能。
2023-01-29 17:51:45 6.84MB 图像处理 船舶分类 三维卷积 体素网格
1
一种基于三维卷积神经网络的视网膜OCT图.PDF,专利,一种基于三维卷积神经网络的视网膜OCT图.PDF,专利
2023-01-27 17:26:37 413KB OCT 专利 深度学习
1
针对传统计算机辅助检测系统中肺结节检测存在大量假阳性的问题,提出一种基于三维卷积神经网络的肺结节识别方法。首先,将传统二维卷积神经网络扩展为三维卷积神经网络,充分挖掘肺结节的三维特征,增强特征的表达能力;其次,将密集连接网络与SENet相结合,在加强特征传递和复用的同时,通过特征重标定自适应学习特征权重;另外,引入focal loss作为网络的分类损失函数,提高对难样本的学习。在LUNA16数据集上的实验结果表明:与当前的主流深度学习算法相比,所提网络模型在平均每组CT图像中假阳个数为1和4时的检出率达到了0.911和0.934,CPM得分为0.891,优于大部分主流算法。
2022-12-06 13:24:54 2.76MB 图像处理 计算机辅 肺结节 三维卷积
1
癫痫脑电分类的课题在生物医学信号处理和机器学习领域很火。这个资源使用了美国儿童医院CHB-MIT数据集,所以首先你得先下载了这个数据集。太大了,资源放不下。 这个资源有癫痫分类的完整过程,包括从CHB-MIT数据集中取出数据,使用var做数据异常检验,利用低通滤波器和归一化函数对数据预处理,提取数据特征,构建1D-CNN卷积神经网络模型,利用数据训练模型,展示模型训练效果。 资源适合做这方面研究的同学,算是入门人工智能入门级的。
1
这个函数需要一个图片矩阵和一个过滤矩阵计算二维卷积。 边缘由镜像原始数据。 卷积矩阵是返回并具有与图片相同的大小和格式矩阵。
2022-10-13 19:36:23 2KB matlab
1
最近一直在想对我的表格数据进行卷积操作,最后终于弄出来了,使用pytorch进行编写
2022-09-25 16:11:15 1.8MB pytorch 表格数据 一维卷积
1
本规范的制定完全归功于本杰明·克劳斯 (2013)。 我扩展了他的 Matlab Exchange 条目( https://www.mathworks.com/matlabcentral/fileexchange/41961-nanconv )以允许 N 维。 下面是 Benjamin Kraus 对这段代码如何工作的解释。 我决定在这里转录它,因为他做得非常好! NANCONVN 运行 CONVN 两次或三次。 第一次运行原始输入信号A和K,不同的是A中的所有NaN值都用零代替。 使用“相同”输入参数,因此输出与 A 的大小相同。第二次卷积在与 A 大小相同的矩阵之间完成,除了在 A 中存在 NaN 值的地方使用零,其他地方使用零。 第一个卷积的输出被第二个卷积的输出归一化。 这会纠正 A 中的缺失 (NaN) 值,但由于在卷积过程中假设为零填充,它具有纠正边缘效应的副作用。 当包
2022-06-20 10:28:34 3KB matlab
1
一维神经网络 非线性回归模型在一维卷积神经网络中的应用
2022-06-10 16:05:14 72KB 卷积神经网络