K-means实际应用

上传者: zxm_jimin | 上传时间: 2021-10-14 20:44:13 | 文件大小: 14KB | 文件类型: -
本实验为了解和测试模糊算法并在实际背景下进行应用。 1、 寻找合适的具有实际意义的数据集。 2、 根据数据集进行matlab自带的kmeans函数和fcm函数进行分类与分析。 3、 自己设计算法myKmeans函数对数据集进行分类。 数据集1:威斯康星州乳腺癌数据集 原因:目前癌症的初步检测还是主要依靠医生的经验判断,为了提高医生的工作效率,以及减少医生的经验判断失误,所有希望计算机协助医生进行判断。 目标:根据已有的对乳腺癌的特征的分类,判断患者的乳腺癌是属于良性还是恶性,进一步帮助患者的治疗。 数据集2:胸外科数据集 原因:目前肺癌治疗主要肺切除术虽然已经成熟,但是患者是否该接受手术还是应该慎重的评定。 目标:根据已有的数据的特征的分类,判断患者是否应该接受手术治疗,有无成功率。 --------------------- 作者:zxm_ 来源:CSDN 原文:https://blog.csdn.net/zxm_jimin/article/details/87938542 版权声明:本文为博主原创文章,转载请附上博文链接!

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明