Methods of Information Geometry

上传者: ziyuang | 上传时间: 2019-12-21 22:22:51 | 文件大小: 4.71MB | 文件类型: djvu
Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the $\alpha$-connections. The duality between the $\alpha$-connection and the $(-\alpha)$-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability distributions, and the general theory of dual affine connections. The second half of the text provides an overview of wide areas of applications, such as statistics, linear systems, information theory, quantum mechanics, convex analysis, neural networks, and affine differential geometry. The book will serve as a suitable text for a topics course for advanced undergraduates and graduate students.

文件下载

评论信息

  • zqyuanustc :
    信息几何,太高端了
    2018-08-19
  • 人工智能学习 :
    很不错的一本书
    2018-04-06
  • ijinvoke :
    信息几何入门的书,对概率几何方面比较有帮助
    2017-04-18
  • physicst :
    很有新意的一本书
    2015-07-09
  • sh0thl :
    对概率几何方面比较有帮助~
    2014-10-06

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明