[{"title":"( 43 个子文件 56.27MB ) 图像识别目标检测必看论文","children":[{"title":"必看论文","children":[{"title":"YOLO","children":[{"title":"You_Only_Look_CVPR_2016_paper.pdf <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"新建文本文档.txt <span style='color:#111;'> 109B </span>","children":null,"spread":false},{"title":"Learning and Example Selection for Object and Pattern Detection.pdf <span style='color:#111;'> 2.70MB </span>","children":null,"spread":false}],"spread":true},{"title":"Fully Convolutional Networks for Semantic Segmentation2015","children":[{"title":"FCN.pdf <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false}],"spread":true},{"title":"Deep Residual Learning for Image Recognition2016","children":[{"title":"Deep Residual Learning for Image Recognition2016.pdf <span style='color:#111;'> 588.99KB </span>","children":null,"spread":false},{"title":"新建文本文档.txt <span style='color:#111;'> 196B </span>","children":null,"spread":false},{"title":"He_Deep_Residual_Learning_CVPR_2016_paper.pdf <span style='color:#111;'> 290.16KB </span>","children":null,"spread":false},{"title":"b7b071f3e65c97d09720f88d6b0ad9f07e8f.pdf <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false}],"spread":true},{"title":"HyperNet_Towards_Accurate_CVPR_2016_paper","children":[{"title":"新建文本文档.txt <span style='color:#111;'> 187B </span>","children":null,"spread":false},{"title":"Kong_HyperNet_Towards_Accurate_CVPR_2016_paper.pdf <span style='color:#111;'> 548.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"Inside-Outside Net","children":[{"title":"新建文本文档.txt <span style='color:#111;'> 54B </span>","children":null,"spread":false},{"title":"Inside-Outside Net.pdf <span style='color:#111;'> 1.68MB </span>","children":null,"spread":false}],"spread":true},{"title":"Faster R-CNN","children":[{"title":"新建文本文档.txt <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"Faster R-CNN.pdf <span style='color:#111;'> 769.69KB </span>","children":null,"spread":false},{"title":"deconv_iccv_names.pdf <span style='color:#111;'> 4.14MB </span>","children":null,"spread":false}],"spread":true},{"title":"2016.8 PVANET Deep but Lightweight Neural Networks for Real-time Object Detection","children":[{"title":"Deep but Lightweight Neural Networks for real time Object Detection.pdf <span style='color:#111;'> 451.23KB </span>","children":null,"spread":false},{"title":"新建文本文档.txt <span style='color:#111;'> 131B </span>","children":null,"spread":false}],"spread":true},{"title":"G-CNN an Iterative Grid Based Object Detector","children":[{"title":"新建文本文档.txt <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"Najibi_G-CNN_An_Iterative_CVPR_2016_paper.pdf <span style='color:#111;'> 1.88MB </span>","children":null,"spread":false}],"spread":true},{"title":"Spatial pyramid pooling in deep convolutional networks for visual recognition","children":[{"title":"新建文本文档.txt <span style='color:#111;'> 112B </span>","children":null,"spread":false},{"title":"Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.pdf <span style='color:#111;'> 3.90MB </span>","children":null,"spread":false},{"title":"20161027spp-ne.txt <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"R-FCN Object Detection via Region-based Fully Convolutional Networks","children":[{"title":"fast R-CNN中的截断奇异值分解.pdf <span style='color:#111;'> 1.50MB </span>","children":null,"spread":false},{"title":"新建文本文档.txt <span style='color:#111;'> 534B </span>","children":null,"spread":false},{"title":"Faster R-CNN.pdf <span style='color:#111;'> 749.28KB </span>","children":null,"spread":false},{"title":"R-FCN Object Detection via Region-based Fully Convolutional Networks.pdf <span style='color:#111;'> 8.51MB </span>","children":null,"spread":false},{"title":"Rich feature hierarchies for accurate object d.pdf <span style='color:#111;'> 1.67MB </span>","children":null,"spread":false},{"title":"Kang_Object_Detection_From_CVPR_2016_paper.pdf <span style='color:#111;'> 2.73MB </span>","children":null,"spread":false},{"title":"Girshick_Fast_R-CNN_ICCV_2015_paper.pdf <span style='color:#111;'> 370.17KB </span>","children":null,"spread":false},{"title":"Rich feature hierarchies for accurate object detection and semantic segmentation.pdf <span style='color:#111;'> 1.63MB </span>","children":null,"spread":false}],"spread":true},{"title":"SSD","children":[{"title":"新建文本文档.txt <span style='color:#111;'> 256B </span>","children":null,"spread":false},{"title":"SSD2.pdf <span style='color:#111;'> 2.39MB </span>","children":null,"spread":false}],"spread":true},{"title":"LocNet Improving Localization Accuracy for Object Detection","children":[{"title":"Edge Boxes-Locating Object Proposals from Edges.pdf <span style='color:#111;'> 2.82MB </span>","children":null,"spread":false},{"title":"LocNet_Improving_Localization_CVPR_2016_paper.pdf <span style='color:#111;'> 1.26MB </span>","children":null,"spread":false},{"title":"Backpropagation applied to handwritten zip code recognition.pdf <span style='color:#111;'> 5.40MB </span>","children":null,"spread":false},{"title":"Caffe: Convolutional Architecture for Fast Feature Embedding.pdf <span style='color:#111;'> 1.40MB </span>","children":null,"spread":false},{"title":"Edge Boxes-Locating Object Proposals from Edge.pdf <span style='color:#111;'> 2.73MB </span>","children":null,"spread":false},{"title":"1511.07763v2.pdf <span style='color:#111;'> 5.01MB </span>","children":null,"spread":false},{"title":"1.txt <span style='color:#111;'> 216B </span>","children":null,"spread":false}],"spread":true},{"title":"Inception-ResNet-v2(最新)","children":[{"title":"新建文本文档.txt <span style='color:#111;'> 108B </span>","children":null,"spread":false},{"title":"Inception-V4——iclr2016_workshop.pdf <span style='color:#111;'> 353.75KB </span>","children":null,"spread":false},{"title":"Inception-V4.pdf <span style='color:#111;'> 935.30KB </span>","children":null,"spread":false},{"title":"1602.07261v2.pdf <span style='color:#111;'> 935.30KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]