SPAMS 信号稀疏表示Matlab工具包(windows版本)

上传者: zhu_yu000 | 上传时间: 2020-01-09 03:15:40 | 文件大小: 3.92MB | 文件类型: gz
法国国立计算机及自动化研究院INRIA开发的稀疏表达工具包,采用了intel底层MKL,效率较高,但要求在2009b以上的matlab上运行

文件下载

资源详情

[{"title":"( 40 个子文件 3.92MB ) SPAMS 信号稀疏表示Matlab工具包(windows版本)","children":[{"title":"SPAMS","children":[{"title":"test_release","children":[{"title":"test_CalcAAt.m <span style='color:#111;'> 181B </span>","children":null,"spread":false},{"title":"test_SparseProject.m <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"test_OMP.m <span style='color:#111;'> 544B </span>","children":null,"spread":false},{"title":"test_nmf.m <span style='color:#111;'> 656B </span>","children":null,"spread":false},{"title":"test_CalcXAt.m <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"test_TrainDL_Memory.m <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"test_all.m <span style='color:#111;'> 134B </span>","children":null,"spread":false},{"title":"test_Lasso.m <span style='color:#111;'> 667B </span>","children":null,"spread":false},{"title":"test_Nesterov.m <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"test_TrainDL.m <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"test_ConjGrad.m <span style='color:#111;'> 286B </span>","children":null,"spread":false},{"title":"test_LassoWeighted.m <span style='color:#111;'> 706B </span>","children":null,"spread":false},{"title":"test_CD.m <span style='color:#111;'> 993B </span>","children":null,"spread":false}],"spread":false},{"title":"release","children":[{"title":"win32","children":[{"title":"mexCalcAAt.mexw32 <span style='color:#111;'> 790.00KB </span>","children":null,"spread":false},{"title":"mexCalcXAt.mexw32 <span style='color:#111;'> 801.50KB </span>","children":null,"spread":false},{"title":"mexNesterov.mexw32 <span style='color:#111;'> 1.41MB </span>","children":null,"spread":false},{"title":"mexConjGrad.mexw32 <span style='color:#111;'> 835.50KB </span>","children":null,"spread":false},{"title":"mexOMP.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"mexSparseProject.m <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"mexCD.mexw32 <span style='color:#111;'> 1.36MB </span>","children":null,"spread":false},{"title":"mexSparseProject.mexw32 <span style='color:#111;'> 977.00KB </span>","children":null,"spread":false},{"title":"mexConjGrad.m <span style='color:#111;'> 526B </span>","children":null,"spread":false},{"title":"mexLasso.mexw32 <span style='color:#111;'> 1.45MB </span>","children":null,"spread":false},{"title":"mexCalcXAt.m <span style='color:#111;'> 414B </span>","children":null,"spread":false},{"title":"nmf.m <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"nnsc.m <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"mexTrainDL.m <span style='color:#111;'> 5.14KB </span>","children":null,"spread":false},{"title":"mexLassoWeighted.mexw32 <span style='color:#111;'> 1.43MB </span>","children":null,"spread":false},{"title":"mexOMP.mexw32 <span style='color:#111;'> 1.56MB </span>","children":null,"spread":false},{"title":"mexTrainDL.mexw32 <span style='color:#111;'> 1.95MB </span>","children":null,"spread":false},{"title":"mexTrainDL_Memory.m <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false},{"title":"mexTrainDL_Memory.mexw32 <span style='color:#111;'> 1.59MB </span>","children":null,"spread":false},{"title":"mexLasso.m <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"displayPatches.m <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"mexLassoWeighted.m <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"mexCD.m <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"mexCalcAAt.m <span style='color:#111;'> 381B </span>","children":null,"spread":false},{"title":"mexNesterov.m <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"LICENSE.txt <span style='color:#111;'> 10.94KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"lena.png <span style='color:#111;'> 147.66KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

  • 奔跑的疯狗 :
    写的很好,适合初学者,原理清楚
    2015-11-22
  • ruanjl3 :
    写得很好的一个库,值得推荐
    2015-07-20
  • wuren20086 :
    慢慢看,资源不错,感谢楼主!
    2015-07-15
  • koven420 :
    注释太少,一般般
    2015-01-30
  • deependeeper :
    帮同学下的,据他说还不错
    2014-12-01

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明