ECC椭圆曲线加密算法 + 学习文档 + 源码

上传者: zh980319 | 上传时间: 2021-07-01 07:39:33 | 文件大小: 17.4MB | 文件类型: ZIP
1985 年,Miller 和 Koblitz 各自独立的提出了椭圆曲线公钥密码[3],它是基于有限域上椭圆曲线构成加密体制,其安全性基于有限域上椭圆曲线离散对数问题(Elliptic Curve Discrete Logarithm Problem, ECDLP)的难解性。椭圆曲线作为公钥密码算法的基础,它利用有限域上椭圆曲线的有限点群代替基 于离散对数问题密码算法中的有限循环群所得到的一类密码算法。与RSA密码系统相比,椭圆曲线密码算法有着巨大的安全性和技术优势。利用椭圆曲线建立密码算法具有两大潜在的优点:一是有取之不尽的椭圆曲线可用于构造椭圆 曲线有限点群;二是不存在计算椭圆曲线有限点群

文件下载

资源详情

[{"title":"( 53 个子文件 17.4MB ) ECC椭圆曲线加密算法 + 学习文档 + 源码","children":[{"title":"Encrypt","children":[{"title":"P2.txt <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"Encrypt.ncb <span style='color:#111;'> 49.00KB </span>","children":null,"spread":false},{"title":"Encrypt.plg <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"C.txt <span style='color:#111;'> 36B </span>","children":null,"spread":false},{"title":"encrypt.opt <span style='color:#111;'> 47.50KB </span>","children":null,"spread":false},{"title":"encrypt.c <span style='color:#111;'> 8.52KB </span>","children":null,"spread":false},{"title":"encrypt.dsp <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"Debug","children":[{"title":"Encrypt.pdb <span style='color:#111;'> 577.00KB </span>","children":null,"spread":false},{"title":"encrypt.pch <span style='color:#111;'> 206.32KB </span>","children":null,"spread":false},{"title":"vc60.idb <span style='color:#111;'> 33.00KB </span>","children":null,"spread":false},{"title":"encrypt.ilk <span style='color:#111;'> 256.78KB </span>","children":null,"spread":false},{"title":"encrypt.obj <span style='color:#111;'> 23.93KB </span>","children":null,"spread":false},{"title":"vc60.pdb <span style='color:#111;'> 52.00KB </span>","children":null,"spread":false},{"title":"encrypt.exe <span style='color:#111;'> 232.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"Pm.txt <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"encrypt.dsw <span style='color:#111;'> 520B </span>","children":null,"spread":false}],"spread":true},{"title":"ECC算法","children":[{"title":"1607qb02232_5_13800.jpg <span style='color:#111;'> 241.47KB </span>","children":null,"spread":false},{"title":"椭圆曲线在VPN中的应用.pdf <span style='color:#111;'> 353.61KB </span>","children":null,"spread":false},{"title":"VPN安全通道.png <span style='color:#111;'> 45.22KB </span>","children":null,"spread":false},{"title":"ECC.docx <span style='color:#111;'> 78.60KB </span>","children":null,"spread":false},{"title":"求逆元.png <span style='color:#111;'> 23.60KB </span>","children":null,"spread":false},{"title":"辗转相除法1.png <span style='color:#111;'> 709.48KB </span>","children":null,"spread":false},{"title":"发送消息的主体.png <span style='color:#111;'> 31.10KB </span>","children":null,"spread":false},{"title":"倍点运算递归算法.png <span style='color:#111;'> 18.69KB </span>","children":null,"spread":false},{"title":"编程题目.png <span style='color:#111;'> 81.59KB </span>","children":null,"spread":false},{"title":"IP Sec VPN.caj <span style='color:#111;'> 3.81MB </span>","children":null,"spread":false},{"title":"u=3551195053,3424465398&fm=11&gp=0.jpg <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":"有限域椭圆曲线的加法运算.png <span style='color:#111;'> 235.38KB </span>","children":null,"spread":false},{"title":"Screenshot_2019-05-09-21-45-45-23.png <span style='color:#111;'> 254.53KB </span>","children":null,"spread":false},{"title":"有限域加法运算.png <span style='color:#111;'> 29.44KB </span>","children":null,"spread":false},{"title":"Screenshot_2019-05-09-21-45-39-88.png <span style='color:#111;'> 248.35KB </span>","children":null,"spread":false},{"title":"辗转相除法2.png <span style='color:#111;'> 753.96KB </span>","children":null,"spread":false},{"title":"ECC.caj <span style='color:#111;'> 348.11KB </span>","children":null,"spread":false},{"title":"使两点加法运算结果处于有限域上.png <span style='color:#111;'> 13.21KB </span>","children":null,"spread":false},{"title":"加密.png <span style='color:#111;'> 60.62KB </span>","children":null,"spread":false},{"title":"有限域椭圆曲线的加法.png <span style='color:#111;'> 244.90KB </span>","children":null,"spread":false},{"title":"椭圆曲线在VPN中的应用.docx <span style='color:#111;'> 168.05KB </span>","children":null,"spread":false},{"title":"椭圆曲线在VPn的应用.pdf <span style='color:#111;'> 1.61MB </span>","children":null,"spread":false},{"title":"ECC.pdf <span style='color:#111;'> 13.01MB </span>","children":null,"spread":false}],"spread":false},{"title":"Decrypt","children":[{"title":"decrypt.dsw <span style='color:#111;'> 520B </span>","children":null,"spread":false},{"title":"decrypt.dsp <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"decrypt.ncb <span style='color:#111;'> 49.00KB </span>","children":null,"spread":false},{"title":"decrypt.opt <span style='color:#111;'> 47.50KB </span>","children":null,"spread":false},{"title":"Debug","children":[{"title":"decrypt.obj <span style='color:#111;'> 23.39KB </span>","children":null,"spread":false},{"title":"decrypt.exe <span style='color:#111;'> 228.04KB </span>","children":null,"spread":false},{"title":"vc60.idb <span style='color:#111;'> 33.00KB </span>","children":null,"spread":false},{"title":"decrypt.pdb <span style='color:#111;'> 561.00KB </span>","children":null,"spread":false},{"title":"decrypt.pch <span style='color:#111;'> 206.29KB </span>","children":null,"spread":false},{"title":"decrypt.ilk <span style='color:#111;'> 246.65KB </span>","children":null,"spread":false},{"title":"Encrypt_ecc.obj <span style='color:#111;'> 17.42KB </span>","children":null,"spread":false},{"title":"vc60.pdb <span style='color:#111;'> 52.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"decrypt.plg <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"decrypt.c <span style='color:#111;'> 8.30KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明