这是SUNet_Swin Transformer的修改版本,带有用于图像去噪的UNet。_This is a modif

上传者: yhsbzl | 上传时间: 2026-02-12 16:45:23 | 文件大小: 1.53MB | 文件类型: ZIP
这是SUNet_Swin Transformer的修改版本,带有用于图像去噪的UNet。_This is a modified version of SUNet_ Swin Transformer with UNet for Image Denoising..zip SUNet-Ver2-Gray-Link2Matlab是基于Swin Transformer架构的SUNet网络的改进版本,其主要改进点在于集成了UNet结构,以提升图像去噪的性能。该网络的核心优势在于其强大的特征提取能力,Swin Transformer结构能够有效捕获图像的全局信息,并处理长距离的依赖关系。UNet的加入进一步增强了对图像细节的把握,尤其是在去除图像噪声的过程中,UNet可以更细致地区分噪声与图像细节。 在图像去噪领域,传统的算法往往难以同时达到去噪效果和保持图像清晰度的双重目标。而基于深度学习的方法,尤其是结合了Transformer与UNet结构的方法,为这一领域带来了新的突破。Transformer在处理序列数据方面的优势,使其在图像去噪任务中能够捕捉到更加丰富的上下文信息,而UNet在图像分割任务中的成功经验则增强了模型在细节上的表现力。 在实际应用中,SUNet-Ver2-Gray-Link2Matlab能够处理各种类型的噪声,包括但不限于高斯噪声、泊松噪声等。它不仅能够恢复图像的原始面貌,还可以在去噪的同时保留重要的边缘信息和纹理细节。这对于图像处理的下游任务,如图像识别、图像分析等都具有重要的意义。 此外,由于SUNet-Ver2-Gray-Link2Matlab是为灰度图像设计的版本,因此它特别适合处理单通道图像数据,这在医疗影像、卫星图像等领域有着广泛的应用。将模型与Matlab平台进行链接,也意味着该模型不仅能够在高性能计算环境下运行,还可以在工程师和研究人员常用的平台上进行便捷的操作和实验。 SUNet-Ver2-Gray-Link2Matlab作为一款图像去噪工具,通过引入UNet改善了Swin Transformer的性能,为图像去噪提供了新的解决方案,并通过其对灰度图像的优化处理以及与Matlab平台的兼容性,为图像处理研究者和工程师提供了强大的工具。

文件下载

资源详情

[{"title":"( 102 个子文件 1.53MB ) 这是SUNet_Swin Transformer的修改版本,带有用于图像去噪的UNet。_This is a modif","children":[{"title":"events.out.tfevents.1648652473.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 18.20KB </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648798121.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648712316.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648715759.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648712610.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648717353.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648796818.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648715440.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648797505.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648727960.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648714621.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648797583.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648709964.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648799868.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648799646.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648711374.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648710017.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648712621.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648726569.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648710151.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648716302.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648725093.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648798045.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648799170.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648708952.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648797614.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648714219.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648799839.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648798910.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648714520.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648715793.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648714468.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648799806.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648715626.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648799755.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648714252.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648799604.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648799699.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648797553.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648716331.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648798765.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648797809.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648715369.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648715729.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648725589.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648715169.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648797950.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648715778.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648798796.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648726235.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648726896.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648799719.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648710391.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648714598.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"events.out.tfevents.1648716924.DESKTOP-KR3MCFB_Denoising <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"evaluation.m <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"DIV2K_noise_val.m <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"DIV2K_noise.m <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"denoise.m <span style='color:#111;'> 533B </span>","children":null,"spread":false},{"title":"add_path.m <span style='color:#111;'> 247B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 684B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 321B </span>","children":null,"spread":false},{"title":"SUNet Swin Transformer UNet for Image Denoising.pdf <span style='color:#111;'> 1.52MB </span>","children":null,"spread":false},{"title":"SUNet_detail.py <span style='color:#111;'> 33.90KB </span>","children":null,"spread":false},{"title":"data_utils.py <span style='color:#111;'> 10.33KB </span>","children":null,"spread":false},{"title":"denoiser_SUNet.py <span style='color:#111;'> 8.81KB </span>","children":null,"spread":false},{"title":"train_noise.py <span style='color:#111;'> 8.01KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"dataset_RGB.py <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":"demo_any_resolution_gray.py <span style='color:#111;'> 5.11KB </span>","children":null,"spread":false},{"title":"demo_any_resolution.py <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"image_utils.py <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false},{"title":"scheduler.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"generate_patches.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"model_utils.py <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"GaussianBlur.py <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"SUNet.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 817B </span>","children":null,"spread":false},{"title":"dataset_utils.py <span style='color:#111;'> 541B </span>","children":null,"spread":false},{"title":"data_RGB.py <span style='color:#111;'> 486B </span>","children":null,"spread":false},{"title":"dir_utils.py <span style='color:#111;'> 420B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 110B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 62B </span>","children":null,"spread":false},{"title":"SUNet_detail.cpython-36.pyc <span style='color:#111;'> 24.88KB </span>","children":null,"spread":false},{"title":"data_utils.cpython-36.pyc <span style='color:#111;'> 10.17KB </span>","children":null,"spread":false},{"title":"dataset_RGB.cpython-36.pyc <span style='color:#111;'> 5.38KB </span>","children":null,"spread":false},{"title":"denoiser_SUNet.cpython-36.pyc <span style='color:#111;'> 5.14KB </span>","children":null,"spread":false},{"title":"denoiser_SUNet2.cpython-36.pyc <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false},{"title":"demo_any_resolution.cpython-36.pyc <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"image_utils.cpython-36.pyc <span style='color:#111;'> 3.95KB </span>","children":null,"spread":false},{"title":"scheduler.cpython-36.pyc <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"scheduler.cpython-38.pyc <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"model_utils.cpython-36.pyc <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"SUNet.cpython-36.pyc <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"dataset_utils.cpython-36.pyc <span style='color:#111;'> 852B </span>","children":null,"spread":false},{"title":"data_RGB.cpython-36.pyc <span style='color:#111;'> 744B </span>","children":null,"spread":false},{"title":"dir_utils.cpython-36.pyc <span style='color:#111;'> 738B </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 225B </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 223B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明