MATLAB中异构代理新凯恩斯(HANK)模型的复制_Replication of Heterogeneous Agen

上传者: yhsbzl | 上传时间: 2025-10-12 23:48:07 | 文件大小: 22.32MB | 文件类型: ZIP
MATLAB中异构代理新凯恩斯(HANK)模型的复制_Replication of Heterogeneous Agent New Keynesian (HANK) model in MATLAB.zip 在经济学领域,新凯恩斯主义模型一直占据着重要的地位,它通过引入价格粘性和名义工资粘性来解释经济中的一些现象。HANK模型,即异构代理新凯恩斯模型,是近年来发展起来的,其主要特点是引入了不同类型的经济主体,能够更加贴近现实地模拟经济动态。在MATLAB这个强大的数学软件平台上复制HANK模型,为研究者提供了一个强有力的研究工具。 MATLAB是一种广泛应用于数值计算、数据分析和算法开发的编程语言。在经济学领域,MATLAB的应用范围极其广泛,它提供了多种工具箱,能够帮助研究者快速实现复杂的数值模拟和经济模型的建立。对于HANK模型而言,MATLAB不仅能够实现模型的基本构建,还能够利用其强大的数值计算功能进行模型的求解与模拟。 复制HANK模型在MATLAB中主要涉及以下几个方面:首先是模型的设定,这包括经济环境的搭建、各个经济主体的行为规则的确定等。在异构代理新凯恩斯模型中,经济主体可以包括不同的家庭、企业等,它们在偏好、生产技术、市场结构等方面可能会有差异。需要在MATLAB中设定模型的动态方程和约束条件。这一步骤需要研究者具备扎实的理论基础和对MATLAB编程的熟练掌握,因为模型的动态方程和约束条件往往是高度非线性的,需要通过迭代算法进行求解。再次,模型参数的校准和校验是模型复制中非常重要的环节。参数的准确度直接关系到模拟结果的真实性,因此研究者通常需要根据现实世界的经济数据对模型参数进行仔细的校准。模型的模拟与分析则是研究者通过编写MATLAB程序来完成模型的运行和预测结果的输出。 在进行HANK模型的复制时,研究者可以利用MATLAB提供的多种工具箱,例如优化工具箱、统计工具箱等,以方便地实现模型的构建和求解。此外,为了提高模型运行的效率和准确性,MATLAB还允许研究者在编写代码时对各种数值计算方法进行优化。 值得注意的是,在复制HANK模型的过程中,研究者还应当关注模型的可扩展性和健壮性。这意味着所构建的模型不仅能够对现实经济进行有效的解释,还应当能够适应不同的情景模拟和政策分析。MATLAB平台上的HANK模型能够方便地进行这类扩展性研究,为政策制定者提供有力的理论支持。 在实际应用中,HANK模型在MATLAB中的复制和使用,对于理解经济波动、评估宏观经济政策、研究财富分配不均等问题具有重要的意义。HANK模型的引入,使得宏观经济模型能够更加细腻地捕捉到个体层面的异质性,有助于深入研究经济现象背后的微观机制。 此外,MATLAB社区也提供了丰富的资源和经验分享,使得更多的研究者可以学习和交流HANK模型的复制经验。社区中的讨论和代码共享,极大地促进了HANK模型在宏观经济研究中的应用和推广。 MATLAB中异构代理新凯恩斯模型的复制,不仅为学术界提供了研究工具,也为政策制定者提供了决策支持。通过这一平台,研究者能够更加深入地理解经济行为,为解决现实世界中的复杂经济问题提供科学依据。

文件下载

资源详情

[{"title":"( 321 个子文件 22.32MB ) MATLAB中异构代理新凯恩斯(HANK)模型的复制_Replication of Heterogeneous Agen","children":[{"title":"fort.4 <span style='color:#111;'> 905B </span>","children":null,"spread":false},{"title":"max_in_place.c <span style='color:#111;'> 7.47KB </span>","children":null,"spread":false},{"title":"deviceQuery.cpp <span style='color:#111;'> 12.18KB </span>","children":null,"spread":false},{"title":"estimate.cu <span style='color:#111;'> 16.13KB </span>","children":null,"spread":false},{"title":"piestimator.cu <span style='color:#111;'> 11.82KB </span>","children":null,"spread":false},{"title":"summary_statistics.cu <span style='color:#111;'> 4.81KB </span>","children":null,"spread":false},{"title":"ss.dat <span style='color:#111;'> 3.27MB </span>","children":null,"spread":false},{"title":"gmat.dat <span style='color:#111;'> 1.64MB </span>","children":null,"spread":false},{"title":"sol.dat <span style='color:#111;'> 20.32KB </span>","children":null,"spread":false},{"title":"deviceQuery <span style='color:#111;'> 597.71KB </span>","children":null,"spread":false},{"title":"SCFgenstats.do <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"PlotDistributions.do <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"PlotDistributions.do <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 10.00KB </span>","children":null,"spread":false},{"title":"SCF_04_small.dta <span style='color:#111;'> 2.74MB </span>","children":null,"spread":false},{"title":"hist_d5lyann.eps <span style='color:#111;'> 34.11KB </span>","children":null,"spread":false},{"title":"hist_d1lyann.eps <span style='color:#111;'> 33.27KB </span>","children":null,"spread":false},{"title":"hist_d1lyann.eps <span style='color:#111;'> 29.53KB </span>","children":null,"spread":false},{"title":"hist_d5lyann.eps <span style='color:#111;'> 28.77KB </span>","children":null,"spread":false},{"title":"hist_lyann.eps <span style='color:#111;'> 17.90KB </span>","children":null,"spread":false},{"title":"hist_lyann.eps <span style='color:#111;'> 13.89KB </span>","children":null,"spread":false},{"title":"hist_yann.eps <span style='color:#111;'> 13.55KB </span>","children":null,"spread":false},{"title":"hist_yann.eps <span style='color:#111;'> 12.24KB </span>","children":null,"spread":false},{"title":"newuob-h.f <span style='color:#111;'> 17.71KB </span>","children":null,"spread":false},{"title":"newuob-h.f <span style='color:#111;'> 17.71KB </span>","children":null,"spread":false},{"title":"newuob-h.f <span style='color:#111;'> 17.71KB </span>","children":null,"spread":false},{"title":"trsapp-h.f <span style='color:#111;'> 9.99KB </span>","children":null,"spread":false},{"title":"trsapp-h.f <span style='color:#111;'> 9.99KB </span>","children":null,"spread":false},{"title":"trsapp-h.f <span style='color:#111;'> 9.99KB </span>","children":null,"spread":false},{"title":"bigden.f <span style='color:#111;'> 9.55KB </span>","children":null,"spread":false},{"title":"bigden.f <span style='color:#111;'> 9.55KB </span>","children":null,"spread":false},{"title":"bigden.f <span style='color:#111;'> 9.55KB </span>","children":null,"spread":false},{"title":"biglag.f <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"biglag.f <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"biglag.f <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"newuoa-h.f <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"newuoa-h.f <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"newuoa-h.f <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"update.f <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"update.f <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"update.f <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"umfpack.f90 <span style='color:#111;'> 88.81KB </span>","children":null,"spread":false},{"title":"Procedures.f90 <span style='color:#111;'> 47.35KB </span>","children":null,"spread":false},{"title":"Procedures.f90 <span style='color:#111;'> 44.63KB </span>","children":null,"spread":false},{"title":"Procedures.f90 <span style='color:#111;'> 44.20KB </span>","children":null,"spread":false},{"title":"random.f90 <span style='color:#111;'> 39.58KB </span>","children":null,"spread":false},{"title":"random.f90 <span style='color:#111;'> 39.43KB </span>","children":null,"spread":false},{"title":"IterateTransitionStickyRb.f90 <span style='color:#111;'> 25.18KB </span>","children":null,"spread":false},{"title":"IterateTransOneAssetStickyRb.f90 <span style='color:#111;'> 17.67KB </span>","children":null,"spread":false},{"title":"SaveIRFOutput.f90 <span style='color:#111;'> 17.06KB </span>","children":null,"spread":false},{"title":"DistributionStatistics.f90 <span style='color:#111;'> 14.50KB </span>","children":null,"spread":false},{"title":"SaveSteadyStateOutput.f90 <span style='color:#111;'> 13.41KB </span>","children":null,"spread":false},{"title":"asa241.f90 <span style='color:#111;'> 12.81KB </span>","children":null,"spread":false},{"title":"HJBUpdate.f90 <span style='color:#111;'> 11.67KB </span>","children":null,"spread":false},{"title":"Transition.f90 <span style='color:#111;'> 11.13KB </span>","children":null,"spread":false},{"title":"SetParameters.f90 <span style='color:#111;'> 9.48KB </span>","children":null,"spread":false},{"title":"TransitionMatrix.f90 <span style='color:#111;'> 8.18KB </span>","children":null,"spread":false},{"title":"DiscountedMPC.f90 <span style='color:#111;'> 7.96KB </span>","children":null,"spread":false},{"title":"Globals.f90 <span style='color:#111;'> 7.37KB </span>","children":null,"spread":false},{"title":"Calibration.f90 <span style='color:#111;'> 7.29KB </span>","children":null,"spread":false},{"title":"MomentConditions.f90 <span style='color:#111;'> 6.93KB </span>","children":null,"spread":false},{"title":"DiscountedMPCTransition.f90 <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"IRFSequence.f90 <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false},{"title":"cumnor.f90 <span style='color:#111;'> 5.92KB </span>","children":null,"spread":false},{"title":"dfovec.f90 <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"SolveSteadyStateEqum.f90 <span style='color:#111;'> 4.90KB </span>","children":null,"spread":false},{"title":"StationaryDistribution.f90 <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"sort2.f90 <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"CumulativeConsumption.f90 <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false},{"title":"dfovec.f90 <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"CumulativeConsTransition.f90 <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"SaveOutput.f90 <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"OptimalConsumption.f90 <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"Estimation.f90 <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"Grids.f90 <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"InitialSteadyState.f90 <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"Simulate.f90 <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"FnDiscountRate.f90 <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"CombinedProcess.f90 <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"InvertMatrix.f90 <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"InvertMatrix.f90 <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"SetParameters.f90 <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"Estimation.f90 <span style='color:#111;'> 2.32KB </span>","children":null,"spread":false},{"title":"Globals.f90 <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"IterateBellman.f90 <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"ComputeMoments.f90 <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"ComputeMoments.f90 <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"ImpulseResponses.f90 <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"Globals.f90 <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"mnbrak.f90 <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"Simulate.f90 <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"rtflsp.f90 <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"SaveOutput.f90 <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"Parameters.f90 <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"SetParameters.f90 <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"golden.f90 <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"rtbis.f90 <span style='color:#111;'> 950B </span>","children":null,"spread":false},{"title":"rtsec.f90 <span style='color:#111;'> 887B </span>","children":null,"spread":false},{"title":"AllocateArrays.f90 <span style='color:#111;'> 826B </span>","children":null,"spread":false},{"title":"FinalSteadyState.f90 <span style='color:#111;'> 581B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明