Origin 9.0科技绘图与数据分析超级学习手册-数据文件

上传者: yantuzhillu | 上传时间: 2025-12-03 10:09:42 | 文件大小: 10.58MB | 文件类型: RAR
《Origin 9.0科技绘图与数据分析超级学习手册》是一本专为用户深度学习Origin 9.0软件而设计的教程,旨在帮助用户掌握如何高效地利用该软件进行科学绘图和复杂的数据分析。Origin 9.0是科研人员和工程师常用的图形用户界面(GUI)应用程序,尤其在实验数据处理、可视化以及统计分析等方面表现出色。 Origin 9.0提供了丰富的2D和3D绘图类型,包括散点图、线图、柱状图、饼图、等高线图、表面图等,适用于各种科研领域。在绘图过程中,用户可以自定义颜色、线条样式、符号形状,以及添加图例、坐标轴、网格线等元素,使图表更具专业性和可读性。此外,Origin支持批量处理,能快速生成多图并排比较,对于论文发表或报告制作非常方便。 在数据分析方面,Origin 9.0包含多种内置统计函数和分析工具,如基本的平均、标准差、回归分析,到高级的傅里叶变换、主成分分析(PCA)、非线性拟合等。用户可以通过工作表中的公式栏直接输入计算公式,或者利用内置的分析菜单进行操作。此外,Origin还支持自定义脚本,通过LabTalk语言,用户能够编写复杂的数据处理和分析程序,提高工作效率。 在学习资源中,课件通常会涵盖基础操作,如数据导入、工作表管理、图形创建与编辑,以及高级功能,例如曲线拟合、数据分析模板的定制。这些内容有助于初学者迅速上手,并逐步深入到高级应用。同时,提供的数据文件可能包含了实例数据,供学习者实践操作,通过实际操作来巩固理论知识。 自学Origin 9.0时,建议按照以下步骤进行: 1. 学习基础界面和工作流程:了解Origin的工作窗口布局,掌握新建项目、导入数据、编辑工作表的基本操作。 2. 探索绘图功能:逐一尝试不同类型的2D和3D图表,学习如何调整图表属性,使图表满足专业要求。 3. 熟悉数据分析工具:通过实例数据,练习使用内置的统计和分析函数,理解其原理和应用场景。 4. 实践曲线拟合:学习如何使用Origin的拟合功能,对数据进行非线性拟合,探究数据背后的规律。 5. 学习LabTalk编程:逐步了解和应用LabTalk语言,编写自定义脚本,实现自动化处理。 6. 定制和保存工作流程:学习如何保存个人的分析模板,提高工作效率。 通过深入学习和实践《Origin 9.0科技绘图与数据分析超级学习手册》中的内容,用户将能够熟练掌握Origin 9.0的各项功能,提升科研和工程领域的数据分析能力。

文件下载

资源详情

[{"title":"( 80 个子文件 10.58MB ) Origin 9.0科技绘图与数据分析超级学习手册-数据文件","children":[{"title":"Origin 9.0科技绘图与数据分析超级学习手册-数据文件","children":[{"title":"Chapter 14","children":[{"title":"QC Chart.dat <span style='color:#111;'> 155B </span>","children":null,"spread":false},{"title":"phm_Cox.dat <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false},{"title":"Statistical and Specialized Graphs.opj <span style='color:#111;'> 8.58MB </span>","children":null,"spread":false},{"title":"Kaplan-Meier.dat <span style='color:#111;'> 4.40KB </span>","children":null,"spread":false},{"title":"abrasion_raw.dat <span style='color:#111;'> 127B </span>","children":null,"spread":false},{"title":"One-Way RM ANOVA_raw.dat <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"time_raw.dat <span style='color:#111;'> 122B </span>","children":null,"spread":false},{"title":"One-Way_ANOVA_indexed.dat <span style='color:#111;'> 890B </span>","children":null,"spread":false},{"title":"Box Chart.dat <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"Histogram.dat <span style='color:#111;'> 28.51KB </span>","children":null,"spread":false},{"title":"body.dat <span style='color:#111;'> 851B </span>","children":null,"spread":false},{"title":"One-Way_ANOVA_raw.dat <span style='color:#111;'> 579B </span>","children":null,"spread":false},{"title":"Two-Way_ANOVA_raw.dat <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":"Automobile Data.ogw <span style='color:#111;'> 43.50KB </span>","children":null,"spread":false},{"title":"temperature.dat <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"Two-Way_ANOVA_indexed.dat <span style='color:#111;'> 469B </span>","children":null,"spread":false},{"title":"Two-Way RM ANOVA_raw.dat <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter 05","children":[{"title":"Group.DAT <span style='color:#111;'> 59B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 08","children":[{"title":"Color Scale 2.dat <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"Linked Layers 1.dat <span style='color:#111;'> 790B </span>","children":null,"spread":false},{"title":"Nitrite.dat <span style='color:#111;'> 94.24KB </span>","children":null,"spread":false},{"title":"Inset.dat <span style='color:#111;'> 21.71KB </span>","children":null,"spread":false},{"title":"Linked Layers 2.dat <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"Template.dat <span style='color:#111;'> 10.46KB </span>","children":null,"spread":false},{"title":"Color Scale 1.dat <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 11","children":[{"title":"Multiple Peaks.dat <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"Circle.dat <span style='color:#111;'> 536B </span>","children":null,"spread":false},{"title":"Raman Baseline.dat <span style='color:#111;'> 21.36KB </span>","children":null,"spread":false},{"title":"Interpolation.dat <span style='color:#111;'> 450B </span>","children":null,"spread":false},{"title":"3D Interpolation.dat <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"Sine Curve.dat <span style='color:#111;'> 346B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 12","children":[{"title":"Signal with High Frequency Noise.dat <span style='color:#111;'> 35.79KB </span>","children":null,"spread":false},{"title":"Convolution.dat <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"fftfilter2.DAT <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"Coherence.dat <span style='color:#111;'> 16.94KB </span>","children":null,"spread":false},{"title":"Chirp Signal.dat <span style='color:#111;'> 33.97KB </span>","children":null,"spread":false},{"title":"Average Sunspot.dat <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"fftfilter1.DAT <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"Step Signal with Random Noise.dat <span style='color:#111;'> 13.04KB </span>","children":null,"spread":false},{"title":"EPR Spectra.DAT <span style='color:#111;'> 16.28KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 04","children":[{"title":"Excel Data.xls <span style='color:#111;'> 29.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 06","children":[{"title":"Statistical and Specialized Graphs.opj <span style='color:#111;'> 8.58MB </span>","children":null,"spread":false},{"title":"pid974","children":[{"title":"pid974.opj <span style='color:#111;'> 89.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"Nitrite.dat <span style='color:#111;'> 94.24KB </span>","children":null,"spread":false},{"title":"Ternary4.dat <span style='color:#111;'> 412B </span>","children":null,"spread":false},{"title":"pid887","children":[{"title":"pid887.opj <span style='color:#111;'> 45.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"pid828","children":[{"title":"pid828.opj <span style='color:#111;'> 251.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"Group.DAT <span style='color:#111;'> 59B </span>","children":null,"spread":false},{"title":"Ternary3.dat <span style='color:#111;'> 549B </span>","children":null,"spread":false},{"title":"Outlier.dat <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"Waterfall.dat <span style='color:#111;'> 429.04KB </span>","children":null,"spread":false},{"title":"Template.dat <span style='color:#111;'> 10.46KB </span>","children":null,"spread":false},{"title":"3D Pie Chart.dat <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"Ternary2.dat <span style='color:#111;'> 857B </span>","children":null,"spread":false},{"title":"gid164","children":[{"title":"gid164.opj <span style='color:#111;'> 182.45KB </span>","children":null,"spread":false}],"spread":false},{"title":"Ternary1.dat <span style='color:#111;'> 652B </span>","children":null,"spread":false}],"spread":false},{"title":"Chapter 15","children":[{"title":"Rice.bmp <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false},{"title":"cell.jpg <span style='color:#111;'> 77.20KB </span>","children":null,"spread":false},{"title":"Flower.jpg <span style='color:#111;'> 241.71KB </span>","children":null,"spread":false},{"title":"Car.bmp <span style='color:#111;'> 549.37KB </span>","children":null,"spread":false},{"title":"red camellia.jpg <span style='color:#111;'> 36.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 16","children":[{"title":"Signal with Shot Noise.dat <span style='color:#111;'> 12.72KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 10","children":[{"title":"Lorentzian.dat <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"Multiple Peaks.dat <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"Polynomial Fit.dat <span style='color:#111;'> 700B </span>","children":null,"spread":false},{"title":"Linear Fit.dat <span style='color:#111;'> 572B </span>","children":null,"spread":false},{"title":"Multiple Linear Regression.dat <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"Gaussian.dat <span style='color:#111;'> 644B </span>","children":null,"spread":false},{"title":"Apparent Fit.dat <span style='color:#111;'> 987B </span>","children":null,"spread":false},{"title":"XYZ Random Gaussian.dat <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"Exponential Decay.dat <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 13","children":[{"title":"Lorentzian.dat <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"Multiple Peaks.dat <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"Peaks with Base.DAT <span style='color:#111;'> 7.20KB </span>","children":null,"spread":false},{"title":"HiddenPeaks.dat <span style='color:#111;'> 13.68KB </span>","children":null,"spread":false},{"title":"Peaks on Exponential Baseline.dat <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 09","children":[{"title":"Linked Layers 1.dat <span style='color:#111;'> 790B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 07","children":[{"title":"3D OpenGL Graphs.opj <span style='color:#111;'> 9.76MB </span>","children":null,"spread":false},{"title":"gid135","children":[{"title":"gid135.opj <span style='color:#111;'> 96.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"XYZ Random Gaussian.dat <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明