[{"title":"( 47 个子文件 19.39MB ) MTCNN和LPRNet中的两级轻量化高性能车牌识别","children":[{"title":"License_Plate_Detection_Pytorch-master","children":[{"title":"License_Plate_Detection_Tutorial.ipynb <span style='color:#111;'> 97.65KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"test","children":[{"title":"8.jpg <span style='color:#111;'> 196.23KB </span>","children":null,"spread":false},{"title":"2.jpg <span style='color:#111;'> 59.23KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 304.25KB </span>","children":null,"spread":false},{"title":"MTCNN.png <span style='color:#111;'> 59.88KB </span>","children":null,"spread":false},{"title":"6.jpg <span style='color:#111;'> 76.52KB </span>","children":null,"spread":false},{"title":"3.jpg <span style='color:#111;'> 122.45KB </span>","children":null,"spread":false},{"title":"5.jpg <span style='color:#111;'> 56.21KB </span>","children":null,"spread":false},{"title":"4.jpg <span style='color:#111;'> 59.65KB </span>","children":null,"spread":false},{"title":"pipeline.png <span style='color:#111;'> 129.17KB </span>","children":null,"spread":false},{"title":"7.jpg <span style='color:#111;'> 85.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"ccpd","children":[{"title":"readme <span style='color:#111;'> 20B </span>","children":null,"spread":false}],"spread":true},{"title":"MTCNN","children":[{"title":"MTCNN.py <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false},{"title":"train","children":[{"title":"Train_Onet.py <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false},{"title":"Train_Pnet.py <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false},{"title":"Data_Loading.py <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"MTCNN_nets.py <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"MTCNN_nets.cpython-36.pyc <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"__pycache__","children":[{"title":"MTCNN.cpython-36.pyc <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"data_preprocessing","children":[{"title":"assemble_Pnet_imglist.py <span style='color:#111;'> 665B </span>","children":null,"spread":false},{"title":"get_Onet_train_data.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"assemble.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"assemble.cpython-36.pyc <span style='color:#111;'> 898B </span>","children":null,"spread":false}],"spread":false},{"title":"assemble_Onet_imglist.py <span style='color:#111;'> 621B </span>","children":null,"spread":false},{"title":"gen_Pnet_train_data.py <span style='color:#111;'> 5.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"weights","children":[{"title":"onet_Weights <span style='color:#111;'> 1.51MB </span>","children":null,"spread":false},{"title":"pnet_Weights <span style='color:#111;'> 43.93KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"__pycache__","children":[{"title":"util.cpython-36.pyc <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"util.py <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"data_set","children":[{"title":"preprocess.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.85KB </span>","children":null,"spread":false},{"title":"LPRNet","children":[{"title":"LPRNet_Train.py <span style='color:#111;'> 7.24KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"load_data.py <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false},{"title":"preprocess.py <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"NotoSansCJK-Regular.ttc <span style='color:#111;'> 17.88MB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"STN.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"STN.cpython-36.pyc <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"LPRNET.cpython-36.pyc <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"LPRNET.py <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"LPRNet_Test.cpython-36.pyc <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false}],"spread":true},{"title":"Evaluation.py <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false},{"title":"LPRNet_Test.py <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"weights","children":[{"title":"LPRNet_model_Init.pth <span style='color:#111;'> 1.72MB </span>","children":null,"spread":false},{"title":"Final_STN_model.pth <span style='color:#111;'> 218.14KB </span>","children":null,"spread":false},{"title":"STN_model_Init.pth <span style='color:#111;'> 218.14KB </span>","children":null,"spread":false},{"title":"Final_LPRNet_model.pth <span style='color:#111;'> 1.72MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true}]