graspnet for win10 torch1.12 cu116

上传者: wtd2000 | 上传时间: 2024-08-23 17:01:36 | 文件大小: 74.38MB | 文件类型: RAR
《graspnet在Win10环境下基于Torch1.12和CUDA11.6的实践》 在当今计算机视觉领域,GraspNet是一个重要的深度学习模型,它主要用于研究机器人抓取物体的能力。原版的GraspNet项目(https://graspnet.net/)为研究人员提供了实现高效抓取策略的框架。然而,随着时间的推移,原始代码可能与最新的硬件和软件环境存在兼容性问题。本文将详细探讨如何在Windows 10操作系统上,利用Torch1.12和CUDA11.6这两个关键组件,成功运行修改后的GraspNet代码。 了解Torch是一个基于Lua的科学计算框架,它包含了大量用于深度学习的工具和库。虽然Torch现在已经被PyTorch广泛取代,但在某些特定场景下,如旧项目维护或特定算法研究时,Torch仍然有其价值。Torch1.12是该框架的一个较早版本,可能不再支持最新的硬件和库,但通过适配和调整,仍可在特定环境中运行。 CUDA(Compute Unified Device Architecture)是由NVIDIA开发的一种编程模型,允许开发者直接利用GPU进行并行计算。CUDA11.6是NVIDIA的一个中间版本,为开发者提供了对高性能计算的支持。在深度学习中,CUDA的更新通常伴随着性能提升和新功能的引入,但对于旧代码,可能需要进行一些适配才能与新版本兼容。 在本案例中,作者针对原版GraspNet代码进行了修改,使其能够在Windows 10系统上与Torch1.12和CUDA11.6协同工作。这通常涉及对GPU设备的调用、内存管理、优化计算效率等方面的调整。对于用户来说,这意味着即使在相对较旧的硬件配置下,也能尝试运行这个模型,进行物体抓取的训练和测试。 要成功部署这个项目,你需要: 1. 安装Torch1.12:确保下载适合Windows系统的Torch版本,并正确配置Lua环境。 2. 安装CUDA11.6:下载并安装CUDA工具包,更新驱动程序,确保GPU支持CUDA11.6。 3. 设置环境变量:添加Torch和CUDA的路径到系统环境变量,以便程序能够找到相关库。 4. 获取和编译源码:下载压缩包中的`graspnet-main`目录,使用Torch的脚本编译和安装项目依赖。 5. 运行代码:根据项目文档或README文件,运行相应的lua脚本来启动训练或测试过程。 在这个过程中,可能会遇到的问题包括但不限于库版本不匹配、驱动程序不兼容、GPU计算资源不足等。解决这些问题通常需要查阅官方文档,查找兼容的库版本,或者对源代码进行进一步的修改。 这个项目为那些希望在旧环境中运行GraspNet的人提供了一个宝贵的资源。通过作者的适配工作,我们有机会在Windows 10上利用Torch1.12和CUDA11.6进行物体抓取的深度学习研究,尽管这可能需要一定的技术背景和调试技巧。这不仅展示了深度学习模型的移植和适应能力,也为学术研究和工程实践提供了有价值的参考。

文件下载

资源详情

[{"title":"( 115 个子文件 74.38MB ) graspnet for win10 torch1.12 cu116","children":[{"title":"interpolate.cpp <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"sampling.cpp <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"group_points.cpp <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"knn_cpu.cpp <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"cylinder_query.cpp <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"ball_query.cpp <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"bindings.cpp <span style='color:#111;'> 826B </span>","children":null,"spread":false},{"title":"vision.cpp <span style='color:#111;'> 108B </span>","children":null,"spread":false},{"title":"knn.cu <span style='color:#111;'> 8.52KB </span>","children":null,"spread":false},{"title":"sampling_gpu.cu <span style='color:#111;'> 7.03KB </span>","children":null,"spread":false},{"title":"interpolate_gpu.cu <span style='color:#111;'> 5.20KB </span>","children":null,"spread":false},{"title":"group_points_gpu.cu <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"cylinder_query_gpu.cu <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"ball_query_gpu.cu <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"pointnet2-0.0.0-py3.8-win-amd64.egg <span style='color:#111;'> 126.08KB </span>","children":null,"spread":false},{"title":"knn_pytorch-0.1-py3.8-win-amd64.egg <span style='color:#111;'> 81.09KB </span>","children":null,"spread":false},{"title":"_ext.cp38-win_amd64.exp <span style='color:#111;'> 17.14KB </span>","children":null,"spread":false},{"title":"knn_pytorch.cp38-win_amd64.exp <span style='color:#111;'> 17.05KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"knn.h <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"cuda_utils.h <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"utils.h <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"interpolate.h <span style='color:#111;'> 569B </span>","children":null,"spread":false},{"title":"sampling.h <span style='color:#111;'> 443B </span>","children":null,"spread":false},{"title":"group_points.h <span style='color:#111;'> 366B </span>","children":null,"spread":false},{"title":"ball_query.h <span style='color:#111;'> 346B </span>","children":null,"spread":false},{"title":"vision.h <span style='color:#111;'> 272B </span>","children":null,"spread":false},{"title":"cylinder_query.h <span style='color:#111;'> 250B </span>","children":null,"spread":false},{"title":"vision.h <span style='color:#111;'> 194B </span>","children":null,"spread":false},{"title":"graspnet-baseline-main.iml <span style='color:#111;'> 452B </span>","children":null,"spread":false},{"title":"knn_pytorch.cp38-win_amd64.lib <span style='color:#111;'> 29.68KB </span>","children":null,"spread":false},{"title":"_ext.cp38-win_amd64.lib <span style='color:#111;'> 29.22KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.67KB </span>","children":null,"spread":false},{"title":"meta.mat <span style='color:#111;'> 881B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 7.14KB </span>","children":null,"spread":false},{"title":"build.ninja <span style='color:#111;'> 6.86KB </span>","children":null,"spread":false},{"title":"build.ninja <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":".ninja_deps <span style='color:#111;'> 470.85KB </span>","children":null,"spread":false},{"title":".ninja_deps <span style='color:#111;'> 8.32KB </span>","children":null,"spread":false},{"title":".ninja_log <span style='color:#111;'> 2.32KB </span>","children":null,"spread":false},{"title":".ninja_log <span style='color:#111;'> 481B </span>","children":null,"spread":false},{"title":"bindings.obj <span style='color:#111;'> 37.19MB </span>","children":null,"spread":false},{"title":"vision.obj <span style='color:#111;'> 37.00MB </span>","children":null,"spread":false},{"title":"interpolate.obj <span style='color:#111;'> 36.68MB </span>","children":null,"spread":false},{"title":"sampling.obj <span style='color:#111;'> 36.68MB </span>","children":null,"spread":false},{"title":"group_points.obj <span style='color:#111;'> 36.67MB </span>","children":null,"spread":false},{"title":"cylinder_query.obj <span style='color:#111;'> 36.67MB </span>","children":null,"spread":false},{"title":"ball_query.obj <span style='color:#111;'> 36.67MB </span>","children":null,"spread":false},{"title":"knn_cpu.obj <span style='color:#111;'> 36.56MB </span>","children":null,"spread":false},{"title":"sampling_gpu.obj <span style='color:#111;'> 981.72KB </span>","children":null,"spread":false},{"title":"interpolate_gpu.obj <span style='color:#111;'> 885.66KB </span>","children":null,"spread":false},{"title":"group_points_gpu.obj <span style='color:#111;'> 873.66KB </span>","children":null,"spread":false},{"title":"cylinder_query_gpu.obj <span style='color:#111;'> 860.64KB </span>","children":null,"spread":false},{"title":"ball_query_gpu.obj <span style='color:#111;'> 859.51KB </span>","children":null,"spread":false},{"title":"knn.obj <span style='color:#111;'> 63.33KB </span>","children":null,"spread":false},{"title":"PKG-INFO <span style='color:#111;'> 201B </span>","children":null,"spread":false},{"title":"PKG-INFO <span style='color:#111;'> 56B </span>","children":null,"spread":false},{"title":"color.png <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false},{"title":"demo_result.png <span style='color:#111;'> 799.98KB </span>","children":null,"spread":false},{"title":"teaser.png <span style='color:#111;'> 587.95KB </span>","children":null,"spread":false},{"title":"depth.png <span style='color:#111;'> 355.41KB </span>","children":null,"spread":false},{"title":"workspace_mask.png <span style='color:#111;'> 774B </span>","children":null,"spread":false},{"title":"pointnet2_modules.py <span style='color:#111;'> 17.20KB </span>","children":null,"spread":false},{"title":"pointnet2_utils.py <span style='color:#111;'> 16.69KB </span>","children":null,"spread":false},{"title":"graspnet_dataset.py <span style='color:#111;'> 13.10KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 10.27KB </span>","children":null,"spread":false},{"title":"modules.py <span style='color:#111;'> 9.47KB </span>","children":null,"spread":false},{"title":"label_generation.py <span style='color:#111;'> 8.43KB </span>","children":null,"spread":false},{"title":"pytorch_utils.py <span style='color:#111;'> 7.33KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false},{"title":"collision_detector.py <span style='color:#111;'> 6.57KB </span>","children":null,"spread":false},{"title":"graspnet.py <span style='color:#111;'> 5.96KB </span>","children":null,"spread":false},{"title":"data_utils.py <span style='color:#111;'> 5.77KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"backbone.py <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"loss_utils.py <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"generate_tolerance_label.py <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1006B </span>","children":null,"spread":false},{"title":"knn_modules.py <span style='color:#111;'> 481B </span>","children":null,"spread":false},{"title":"pointnet2_utils.cpython-38.pyc <span style='color:#111;'> 14.32KB </span>","children":null,"spread":false},{"title":"pointnet2_modules.cpython-38.pyc <span style='color:#111;'> 13.29KB </span>","children":null,"spread":false},{"title":"graspnet_dataset.cpython-38.pyc <span style='color:#111;'> 9.42KB </span>","children":null,"spread":false},{"title":"modules.cpython-38.pyc <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"pytorch_utils.cpython-38.pyc <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"data_utils.cpython-38.pyc <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false},{"title":"collision_detector.cpython-38.pyc <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false},{"title":"graspnet.cpython-38.pyc <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"loss.cpython-38.pyc <span style='color:#111;'> 4.42KB </span>","children":null,"spread":false},{"title":"loss_utils.cpython-38.pyc <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"label_generation.cpython-38.pyc <span style='color:#111;'> 4.04KB </span>","children":null,"spread":false},{"title":"backbone.cpython-38.pyc <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"knn_modules.cpython-38.pyc <span style='color:#111;'> 675B </span>","children":null,"spread":false},{"title":"_ext.cp38-win_amd64.pyd <span style='color:#111;'> 357.00KB </span>","children":null,"spread":false},{"title":"knn_pytorch.cp38-win_amd64.pyd <span style='color:#111;'> 176.00KB </span>","children":null,"spread":false},{"title":"command_test.sh <span style='color:#111;'> 331B </span>","children":null,"spread":false},{"title":"command_train.sh <span style='color:#111;'> 269B </span>","children":null,"spread":false},{"title":"command_generate_tolerance_label.sh <span style='color:#111;'> 92B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明