毕设研究课题:根据轴承的振动序列数据来诊断轴承故障.zip

上传者: wq6qeg88 | 上传时间: 2022-05-23 19:04:06 | 文件大小: 439KB | 文件类型: ZIP
1.介绍 毕设研究课题,根据轴承的振动数据信息来诊断轴承故障的位置和故障严重等级。方法思路走的是数据驱动,使用传统机器学习方法以及深度学习方法。这个开源项目做的是整理基于传统机器学习的轴承故障诊断的内容。 主要分为三个部分: 数据集预处理:数据集增强(utils.augment) 特征工程(utils.feature):均值(mean), 均方差(rms), 标准差(std), 偏度(skewness), 峭度(kurtosis), 包络谱最大幅值处频率(maxf), 信号熵(signal_entropy), 信号幅值中位数处概率密度值(am_median_pdf) 分类器训练和保存

文件下载

资源详情

[{"title":"( 41 个子文件 439KB ) 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障.zip","children":[{"title":"毕设研究课题:根据轴承的振动序列数据来诊断轴承故障","children":[{"title":"models","children":[{"title":"RandomForest.pkl <span style='color:#111;'> 878.03KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 36B </span>","children":null,"spread":false},{"title":"knn.pkl <span style='color:#111;'> 313.17KB </span>","children":null,"spread":false},{"title":"GaussianNB.pkl <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false}],"spread":true},{"title":"main.py <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"readme.md <span style='color:#111;'> 753B </span>","children":null,"spread":false}],"spread":true},{"title":"introduction <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 866B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":".history","children":[{"title":"helper_20210303151820.py <span style='color:#111;'> 549B </span>","children":null,"spread":false},{"title":"helper_20210303151949.py <span style='color:#111;'> 660B </span>","children":null,"spread":false},{"title":"helper_20210303152154.py <span style='color:#111;'> 918B </span>","children":null,"spread":false},{"title":"helper_20210303152203.py <span style='color:#111;'> 924B </span>","children":null,"spread":false},{"title":"helper_20210303151627.py <span style='color:#111;'> 483B </span>","children":null,"spread":false},{"title":"helper_20210303151639.py <span style='color:#111;'> 495B </span>","children":null,"spread":false},{"title":"helper_20210303152157.py <span style='color:#111;'> 917B </span>","children":null,"spread":false},{"title":"helper_20210303152246.py <span style='color:#111;'> 930B </span>","children":null,"spread":false},{"title":"helper_20210303151656.py <span style='color:#111;'> 503B </span>","children":null,"spread":false},{"title":"helper_20210303152242.py <span style='color:#111;'> 913B </span>","children":null,"spread":false},{"title":"helper_20210303152249.py <span style='color:#111;'> 914B </span>","children":null,"spread":false},{"title":"helper_20210303151626.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"helper_20210303152111.py <span style='color:#111;'> 868B </span>","children":null,"spread":false},{"title":"helper_20210303152251.py <span style='color:#111;'> 914B </span>","children":null,"spread":false},{"title":"helper_20210303152211.py <span style='color:#111;'> 908B </span>","children":null,"spread":false},{"title":"helper_20210303152155.py <span style='color:#111;'> 918B </span>","children":null,"spread":false},{"title":"helper_20210303151916.py <span style='color:#111;'> 602B </span>","children":null,"spread":false},{"title":"helper_20210303151659.py <span style='color:#111;'> 504B </span>","children":null,"spread":false},{"title":"helper_20210303151628.py <span style='color:#111;'> 483B </span>","children":null,"spread":false},{"title":"helper_20210303152129.py <span style='color:#111;'> 881B </span>","children":null,"spread":false},{"title":"helper_20210303152258.py <span style='color:#111;'> 914B </span>","children":null,"spread":false},{"title":"helper_20210303152107.py <span style='color:#111;'> 859B </span>","children":null,"spread":false}],"spread":false},{"title":"pytorchtools.py <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"feature.cpython-37.pyc <span style='color:#111;'> 6.41KB </span>","children":null,"spread":false},{"title":"helper.cpython-37.pyc <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"pytorchtools.cpython-37.pyc <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"augment.cpython-36.pyc <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false},{"title":"augment.cpython-37.pyc <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"feature.py <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"augment.py <span style='color:#111;'> 5.09KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"filters-checkpoint.ipynb <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"imbalance-datasets-checkpoint.ipynb <span style='color:#111;'> 7.08KB </span>","children":null,"spread":false},{"title":"add_noise-checkpoint.ipynb <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明