上传者: wizardforcel
|
上传时间: 2025-09-10 16:27:54
|
文件大小: 24.74MB
|
文件类型: PDF
《深度学习的数学导论》是一本针对深度学习算法的学术著作,由Anurff Jentzen、Benno Kuckuck和Philippe von Wurstemberger合作撰写。该书主要探讨了深度学习的基础理论、数学原理及其在实际应用中的实现。以下是书中涵盖的关键知识点:
1. **深度学习基础**:深度学习是一种利用多层结构(即深度)的人工神经网络(ANNs)来学习数据表示的机器学习技术。书中详细介绍了全连接前馈网络、卷积神经网络(CNNs)、循环神经网络(RNNs)和残差网络(ResNets)等不同类型的神经网络结构。
2. **微积分基础**:在第二部分,作者们讨论了全连接前馈网络的微积分基础,这对于理解和优化神经网络的参数至关重要。
3. **函数近似**:书中分析了神经网络如何作为通用函数近似器,探讨了一维和多元函数的神经网络近似理论,这有助于理解神经网络的表达能力。
4. **优化问题**:深度学习通常涉及到寻找最优参数来最小化损失函数,这部分内容深入研究了优化问题的建模和求解。讨论了梯度下降(GD)和随机梯度下降(SGD)等优化算法,以及它们与梯度流(GF ODEs)的关系。
5. **梯度计算**:反向传播是神经网络训练中计算梯度的主要方法,第八章详细介绍了这一过程。
6. **Kurdyka-Łojasiewicz(KL)不等式**:在第九章中,作者探讨了KL方法,这是一个用于处理神经网络训练中优化问题的数学工具,它可以处理非凸优化问题的复杂性。
7. **批归一化(BN)**:第十章专注于批归一化技术,这是一种提高神经网络训练速度和稳定性的技术,通过标准化层内的激活值。
8. **算法实现**:书中提供了所有Python源代码,方便读者实践和理解理论内容。
《深度学习的数学导论》是为初学者和专业人士提供深度学习理论基础的全面资源,涵盖了从基本概念到复杂理论的各个方面,并且强调了数学在理解和改进深度学习模型中的核心作用。书中包含的理论分析、优化算法和实践应用将帮助读者建立坚实的数学基础,以便在深度学习领域进行更深入的研究。