基于主成分分析的人脸识别

上传者: 62264287 | 上传时间: 2022-04-07 09:09:39 | 文件大小: 780KB | 文件类型: DOC
基于主成分分析的人脸识别: 主成分分析(Principal Component Analysis,简称PCA)是最常用的一种降维方法。 我们首先从人脸数据库中读取图片,并把图片转换为数据存在矩阵中,然后把每一张图片的矩阵拉成列向量,把所有列向量装在一个矩阵里面。 然后用PCA对这个矩阵进行降维,即让矩阵中的每一个数据都减去数据的均值,然后对新形成的矩阵求它的协方差矩阵,再对这个协方差矩阵进行特征值分解得到特征值和特征向量,让特征向量按照特征值的大小进行从大到小的顺序排列,然后取前k个特征向量组成一个矩阵,让这个矩阵的转置左乘原来的协方差矩阵,得到的新矩阵就是降维后的数据。 然后分别读取一定数量的列向量(即图片)作为训练集图片,读取一定数量的作为测试集图片。之后用测试集里面的一张图片和训练集里面每一张图片的数据做差取绝对值,然后把得到的这些绝对值按从小到大的顺序进行排列。 之后用k近邻学习(k-Nearest Neighbor,简称kNN),选择排列在前k个最小距离所对应的图片序号,选择出现次数最多的图片序号,如果没有重复出现的,那么选择距离最小的,即排列第一的。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明