机器学习课程大作业个贷违约预测项目源码.zip

上传者: 55305220 | 上传时间: 2022-06-13 16:05:10 | 文件大小: 142.31MB | 文件类型: ZIP
机器学习课程大作业个贷违约预测项目源码,评测指标 经典预测任务:使用ROC曲线下面积(Area Under Curve, AUC)作为评价指标。AUC值越大,预测越准确。 描述性聚类-->软聚类 使用的三种模型 多层感知机,决策树(概率树),自定义模型(距离-概率转换方法) 机器学习课程大作业个贷违约预测项目源码,评测指标 经典预测任务:使用ROC曲线下面积(Area Under Curve, AUC)作为评价指标。AUC值越大,预测越准确。 描述性聚类-->软聚类 使用的三种模型 多层感知机,决策树(概率树),自定义模型(距离-概率转换方法)

文件下载

资源详情

[{"title":"( 59 个子文件 142.31MB ) 机器学习课程大作业个贷违约预测项目源码.zip","children":[{"title":"新建文件夹","children":null,"spread":false},{"title":"involution2overfit-master","children":[{"title":"Model_Distance2Probability","children":[{"title":"main.go <span style='color:#111;'> 600B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 91B </span>","children":null,"spread":false},{"title":"test","children":[{"title":"test.go <span style='color:#111;'> 897B </span>","children":null,"spread":false}],"spread":true},{"title":"train","children":[{"title":"train.go <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"tree.txt <span style='color:#111;'> 708B </span>","children":null,"spread":false},{"title":"verification","children":[{"title":"verification.go <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false}],"spread":true},{"title":"poi","children":[{"title":"poi.go <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"main.exe <span style='color:#111;'> 2.29MB </span>","children":null,"spread":false},{"title":".keep <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"tools","children":[{"title":"tools.go <span style='color:#111;'> 6.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"ver_public.csv <span style='color:#111;'> 1.94MB </span>","children":null,"spread":false},{"title":"train_internet.csv <span style='color:#111;'> 155.33MB </span>","children":null,"spread":false},{"title":"test_public.csv <span style='color:#111;'> 996.74KB </span>","children":null,"spread":false},{"title":"train_public.csv <span style='color:#111;'> 1.94MB </span>","children":null,"spread":false},{"title":"submit_example.csv <span style='color:#111;'> 83.02KB </span>","children":null,"spread":false}],"spread":true}],"spread":false},{"title":"README.md <span style='color:#111;'> 7.69KB </span>","children":null,"spread":false},{"title":"Model_MLP","children":[{"title":".gitignore <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 92B </span>","children":null,"spread":false},{"title":"models","children":[{"title":"mlp.pth <span style='color:#111;'> 31.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"src","children":[{"title":"dataloader","children":[{"title":"dataset.py <span style='color:#111;'> 520B </span>","children":null,"spread":false},{"title":"tools.py <span style='color:#111;'> 3.44KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 60B </span>","children":null,"spread":false},{"title":"preprocess.py <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"networks","children":[{"title":"__init__.py <span style='color:#111;'> 20B </span>","children":null,"spread":false},{"title":"mlp.py <span style='color:#111;'> 683B </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 772B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 21B </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":".keep <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"train_internet.csv <span style='color:#111;'> 155.33MB </span>","children":null,"spread":false},{"title":"test_public.csv <span style='color:#111;'> 996.74KB </span>","children":null,"spread":false},{"title":"train_public.csv <span style='color:#111;'> 1.94MB </span>","children":null,"spread":false},{"title":"submission.csv <span style='color:#111;'> 91.04KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"report","children":[{"title":"photos","children":[{"title":"pytorch.png <span style='color:#111;'> 6.02KB </span>","children":null,"spread":false},{"title":"OS.png <span style='color:#111;'> 4.75KB </span>","children":null,"spread":false},{"title":"python.png <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false},{"title":"chip.png <span style='color:#111;'> 5.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"tex","children":[{"title":"report.tex <span style='color:#111;'> 48.15KB </span>","children":null,"spread":false},{"title":"report.log <span style='color:#111;'> 87.94KB </span>","children":null,"spread":false},{"title":"report.pdf <span style='color:#111;'> 508.76KB </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"个贷违约预测_报告.docx <span style='color:#111;'> 386.03KB </span>","children":null,"spread":false},{"title":"~$违约预测_报告.docx <span style='color:#111;'> 162B </span>","children":null,"spread":false},{"title":"slides","children":[{"title":"report_pdf.pdf <span style='color:#111;'> 6.85MB </span>","children":null,"spread":false},{"title":"report_ppt.pptx <span style='color:#111;'> 14.15MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".gitee","children":[{"title":"ISSUE_TEMPLATE.zh-CN.md <span style='color:#111;'> 79B </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"Model_DicisionTree","children":[{"title":"nn2.csv <span style='color:#111;'> 137.88KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"raw_data","children":[{"title":"train_internet.csv <span style='color:#111;'> 155.33MB </span>","children":null,"spread":false},{"title":"test_public.csv <span style='color:#111;'> 996.74KB </span>","children":null,"spread":false},{"title":"train_public.csv <span style='color:#111;'> 1.94MB </span>","children":null,"spread":false},{"title":"nw_train_public.csv <span style='color:#111;'> 3.08MB </span>","children":null,"spread":false},{"title":"submit_example.csv <span style='color:#111;'> 83.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"决策树成绩.png <span style='color:#111;'> 9.88KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 17.07KB </span>","children":null,"spread":false},{"title":"result.csv <span style='color:#111;'> 140.03KB </span>","children":null,"spread":false},{"title":".keep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明