Densenet121.zip

上传者: 51331359 | 上传时间: 2022-06-15 11:18:52 | 文件大小: 110.32MB | 文件类型: ZIP
本人依据Densenet121预训练模型进行迁移学习,可识别柑橘叶片的正常、缺镁、黄龙病三种状态,最高准确率可达99.3%,可通过tensorboard进行训练数据图像的获取。

文件下载

资源详情

[{"title":"( 25 个子文件 110.32MB ) Densenet121.zip","children":[{"title":"Densenet121","children":[{"title":"models","children":[{"title":"Densenet121_myself.pt <span style='color:#111;'> 27.11MB </span>","children":null,"spread":false}],"spread":true},{"title":"runs","children":[{"title":"Mar24_21-37-10_DESKTOP-UD4KI6E","children":[{"title":"events.out.tfevents.1648129030.DESKTOP-UD4KI6E <span style='color:#111;'> 703.97KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"class_indices.json <span style='color:#111;'> 77B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 6.51KB </span>","children":null,"spread":false},{"title":"predict_single.py <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"densenet121-a639ec97.pth <span style='color:#111;'> 30.84MB </span>","children":null,"spread":false},{"title":"predict_many.py <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"test","children":[{"title":"que_mei","children":[{"title":"000000.jpg <span style='color:#111;'> 3.36MB </span>","children":null,"spread":false},{"title":"000002.jpg <span style='color:#111;'> 4.31MB </span>","children":null,"spread":false},{"title":"000004.jpg <span style='color:#111;'> 3.79MB </span>","children":null,"spread":false},{"title":"000005.jpg <span style='color:#111;'> 3.83MB </span>","children":null,"spread":false},{"title":"000001.jpg <span style='color:#111;'> 3.10MB </span>","children":null,"spread":false},{"title":"000003.jpg <span style='color:#111;'> 3.17MB </span>","children":null,"spread":false}],"spread":true},{"title":"huanglong_bing","children":[{"title":"000000.jpg <span style='color:#111;'> 3.46MB </span>","children":null,"spread":false},{"title":"000002.jpg <span style='color:#111;'> 3.29MB </span>","children":null,"spread":false},{"title":"000004.jpg <span style='color:#111;'> 3.12MB </span>","children":null,"spread":false},{"title":"000005.jpg <span style='color:#111;'> 2.68MB </span>","children":null,"spread":false},{"title":"000001.jpg <span style='color:#111;'> 2.87MB </span>","children":null,"spread":false},{"title":"000003.jpg <span style='color:#111;'> 2.71MB </span>","children":null,"spread":false}],"spread":true},{"title":"zheng_chang","children":[{"title":"000000.jpg <span style='color:#111;'> 3.53MB </span>","children":null,"spread":false},{"title":"000002.jpg <span style='color:#111;'> 2.80MB </span>","children":null,"spread":false},{"title":"000004.jpg <span style='color:#111;'> 2.54MB </span>","children":null,"spread":false},{"title":"000005.jpg <span style='color:#111;'> 2.54MB </span>","children":null,"spread":false},{"title":"000001.jpg <span style='color:#111;'> 2.27MB </span>","children":null,"spread":false},{"title":"000003.jpg <span style='color:#111;'> 2.93MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明