基于机器学习的时间序列预测方法研究与应用

上传者: 47367099 | 上传时间: 2022-04-27 16:05:45 | 文件大小: 5.45MB | 文件类型: PDF
随着科学技术的不断进步,时间序列预测方法得到了很大的发展,目前常用的时 间序列方法有传统的时间序列预测方法和基于机器学习的预测方法。这些方法 使用方便,操作简单,预测精度高,在业界得到了广泛的应用,但是这些方法 用在不同的数据集中结果精度差距较大,不具有通用性。因此,目前很多研究 者采用组合预测方法和混合预测方法来提高这些预测方法的通用性,通过将不 同的传统时间序列预测方法和基于机器学习的预测方法相结合,充分利用各个 模型的优点,尽可能地提高时间序列预测的精度。 本文首先提出一种新的时间序列预测方法BP-SARIMA-ANFIS,该方法组 合了反向传播神经网络(BP)、季节性差分自回归移动平均模型(SARIMA)和自 适应模糊神经网络系统(ANFIS)。该方法首先用BP、SARIMA和ANFIS对原始 时间序列数据进行预测,然后取三种方法得到的预测结果的加权平均值。权值 系数在组合预测模型中有着非常重要的作用,本文采用微分进化算法(DE)优化 BP-SARIMA-ANFIS方法的加权系数。通过对澳大利亚新南威尔士州的电力负 荷数据进行模拟,并将BP-SARIMA-ANFIS方法的预测

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明