基于PyTorch的MTS-Mixers代码

上传者: 46163097 | 上传时间: 2024-06-25 20:59:25 | 文件大小: 922KB | 文件类型: ZIP
这是MTS-Mixers的官方实现:通过因子化时间和通道混合进行多元时间序列预测。 使用: 1. 安装 Python 版本不低于 3.6,PyTorch 版本不低于 1.5.0。 2. 运行 pip install -r requirements.txt 3. 下载数据并将 .csv 文件放在 ./dataset 文件夹中。您可以从 Google Drive 获取所有基准测试数据。所有数据集都经过了良好的预处理,可以轻松使用。 4. 训练模型。我们在 script.md 中提供了一个运行所有基准测试脚本的示例。如果需要,您可以更改任何超参数。请查看 run.py 以了解有关超参数配置的更多详细信息。 引用:Li Z, Rao Z, Pan L, et al. MTS-Mixers: Multivariate Time Series Forecasting via Factorized Temporal and Channel Mixing[J]. arXiv preprint arXiv:2302.04501, 2023.

文件下载

资源详情

[{"title":"( 33 个子文件 922KB ) 基于PyTorch的MTS-Mixers代码","children":[{"title":"MTS-Mixers-main","children":[{"title":"layers","children":[{"title":"TransformerBlocks.py <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"Projection.py <span style='color:#111;'> 745B </span>","children":null,"spread":false},{"title":"Invertible.py <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"Embedding.py <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"clean.sh <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"decomposition.py <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 361B </span>","children":null,"spread":false},{"title":"masking.py <span style='color:#111;'> 831B </span>","children":null,"spread":false},{"title":"timefeatures.py <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"tools.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"exp","children":[{"title":"exp_basic.py <span style='color:#111;'> 878B </span>","children":null,"spread":false},{"title":"exp_main.py <span style='color:#111;'> 13.22KB </span>","children":null,"spread":false}],"spread":true},{"title":"run.py <span style='color:#111;'> 8.01KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 95B </span>","children":null,"spread":false},{"title":"models","children":[{"title":"MTSMixer.py <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"DLinear.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"MTSAttn.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"Transformer.py <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"SCINet.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"Transformer_lite.py <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"MTSD.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"MTSMatrix.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"FNet.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"pics","children":[{"title":"temporal_fac.svg <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"results.png <span style='color:#111;'> 565.35KB </span>","children":null,"spread":false},{"title":"results_2.png <span style='color:#111;'> 358.71KB </span>","children":null,"spread":false},{"title":"MTS-Mixers.svg <span style='color:#111;'> 32.48KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":"data_provider","children":[{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"data_loader.py <span style='color:#111;'> 14.30KB </span>","children":null,"spread":false},{"title":"data_factory.py <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"script.md <span style='color:#111;'> 4.77KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明