上传者: 45890678
|
上传时间: 2022-06-01 12:05:34
|
文件大小: 1.61MB
|
文件类型: DOCX
近年来,随着深度学习的快速发展,脑启发式的人工智能光子神经网络引起了人们的新兴趣。光子神经网络在许多计算任务中有着广泛的应用,例如图像识别、语音处理、计算机视觉和机器翻译等。光子神经网络显著提高了神经网络的计算速度和能源效率,与数字电子相比提高了几个数量级。硅光子学结合了电子学和光子学的优势,为大规模光子神经网络集成实现带来了希望。本文介绍了人工神经网络的基本概念,回顾了硅光子神经网络中的一些重要最新进展,分析其原理及关键器件。希望通过本文综述,能够为研究者们提供光子神经网络的概述,加深对这个新兴领域的研究兴趣。