基于深度学习的车型识别研究与应用

上传者: 45890678 | 上传时间: 2022-06-01 12:05:34 | 文件大小: 1.17MB | 文件类型: PDF
最近来,随着我国经济水平不断发展,人民生活质量和可支配收入逐渐提升,越来越多人希望获得更快捷的出行方式,选择购买电动汽车或新能源汽车,全国机动车持有数量呈现出不断增涨的姿态。同时,这也带来了日益严重的交通拥堵、停车困难、交通事故等问题。构建智能交通系统显得尤为必要,车型识别技术作为其中重要组成部分,随着深度学习方法得到广泛应用,本文基于深度学习对车辆车型识别进行研究,为解决日益凸显的交通问题做出贡献。本文对国内外车型识别研究进行总结,分析不同识别方法优势与不足。介绍神经网络的发展、相关结构与技术原理,深入了解不同深度神经网络模型(VGGNet、InceptionNet、ResNet)的结构及原理,突出其独特改进优势。本文选用识别精度较高,在速度上具有很大优势的YOLO算法,在BIT-Vehicle ID数据集上进行车辆检测试验,实验获得较好的准确度,mAP达到94.08%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明