python-TensorFlow机器学习-材料

上传者: 44903702 | 上传时间: 2021-05-05 16:05:58 | 文件大小: 34.47MB | 文件类型: ZIP
python-TensorFlow机器学习-材料

文件下载

资源详情

[{"title":"( 58 个子文件 34.47MB ) python-TensorFlow机器学习-材料","children":[{"title":"lib","children":[{"title":"4.序列时间序列和预测","children":[{"title":"4.16 双向LSTM时间预测","children":[{"title":"双向LSTM时间序列预测.ipynb <span style='color:#111;'> 154.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.14 RNN网络样本的生成方法","children":[{"title":"RNN网络样本的生成方法.ipynb <span style='color:#111;'> 7.32KB </span>","children":null,"spread":false},{"title":"RNN网络样本的生成方法2.ipynb <span style='color:#111;'> 75.04KB </span>","children":null,"spread":false},{"title":"RNN网络样本的生成方法3.ipynb <span style='color:#111;'> 271.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.12 时序信号的生成","children":[{"title":"时序信号的生成1.ipynb <span style='color:#111;'> 432.96KB </span>","children":null,"spread":false},{"title":"时序信号的生成2.ipynb <span style='color:#111;'> 389.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.13 时间序列预测方法(移动平均)","children":[{"title":"时间序列的预测方法(移动平均).ipynb <span style='color:#111;'> 633.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.15 RNN时间序列预测","children":[{"title":"RNN时间序列预测2——实例.ipynb <span style='color:#111;'> 129.10KB </span>","children":null,"spread":false},{"title":"RNN时间序列预测.ipynb <span style='color:#111;'> 132.52KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"1.深度学习","children":[{"title":"1.3 卷积","children":[{"title":"07 第三章 教程-2卷积的程序实现.ipynb <span style='color:#111;'> 286.93KB </span>","children":null,"spread":false},{"title":"06 第三章 教程-1用卷积提高识别精度.ipynb <span style='color:#111;'> 49.68KB </span>","children":null,"spread":false},{"title":"09 第三章 练习-参考答案.ipynb <span style='color:#111;'> 4.53KB </span>","children":null,"spread":false},{"title":"08 第三章 练习-用卷积提高手写数字识别准确度.ipynb <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"1.1 TensorFlow介绍","children":[{"title":"02 第一章 练习-房价预测.ipynb <span style='color:#111;'> 107.05KB </span>","children":null,"spread":false},{"title":"01 第一章 教程-深度学习的Hello World.ipynb <span style='color:#111;'> 63.68KB </span>","children":null,"spread":false}],"spread":true},{"title":"1.4 更复杂的图像应用","children":[{"title":"10 第四章 教程-识别人和马项目.ipynb <span style='color:#111;'> 1.48MB </span>","children":null,"spread":false}],"spread":true},{"title":"1.2 计算机视觉","children":[{"title":"05 第二章 练习-MNIST 参考答案.ipynb <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"03 第二章 教程-计算机视觉实例.ipynb <span style='color:#111;'> 95.40KB </span>","children":null,"spread":false},{"title":"04 第二章 练习-MNIST.ipynb <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"2.机器视觉 - 图像分类","children":[{"title":"2.8 图像多分类","children":[{"title":"Exercise 8 - Answer.ipynb <span style='color:#111;'> 70.87KB </span>","children":null,"spread":false},{"title":"sign_mnist_train.csv <span style='color:#111;'> 79.42MB </span>","children":null,"spread":false},{"title":"Part 8 - Lesson 2 - Notebook (RockPaperScissors).ipynb <span style='color:#111;'> 396.31KB </span>","children":null,"spread":false},{"title":"sign_mnist_test.csv <span style='color:#111;'> 20.77MB </span>","children":null,"spread":false},{"title":"Exercise 8 - Question.ipynb <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"2.5 图像处理实例","children":[{"title":"Exercise 5 - Answer.ipynb <span style='color:#111;'> 15.09KB </span>","children":null,"spread":false},{"title":"Exercise 5 - Question.ipynb <span style='color:#111;'> 10.29KB </span>","children":null,"spread":false},{"title":"Part 5 - Lesson 2 - Notebook.ipynb <span style='color:#111;'> 1.31MB </span>","children":null,"spread":false}],"spread":true},{"title":"2.6 图像增强","children":[{"title":"Exercise 6 - Question.ipynb <span style='color:#111;'> 10.29KB </span>","children":null,"spread":false},{"title":"Horse_or_Human_NoValidation.ipynb <span style='color:#111;'> 1.48MB </span>","children":null,"spread":false},{"title":"Part 6 - Lesson 4 - Notebook.ipynb <span style='color:#111;'> 11.19KB </span>","children":null,"spread":false},{"title":"Horse-or-Human-WithDropouts.ipynb <span style='color:#111;'> 20.81KB </span>","children":null,"spread":false},{"title":"Part 6 - Lesson 2 - Notebook (Cats v Dogs Augmentation).ipynb <span style='color:#111;'> 232.50KB </span>","children":null,"spread":false},{"title":"Exercise 6 - Answer.ipynb <span style='color:#111;'> 11.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"2.7 迁移学习","children":[{"title":"Exercise 7 - Answer.ipynb <span style='color:#111;'> 68.78KB </span>","children":null,"spread":false},{"title":"Exercise 7 - Question.ipynb <span style='color:#111;'> 12.00KB </span>","children":null,"spread":false},{"title":"Part 7 - Lesson 3 - Notebook.ipynb <span style='color:#111;'> 16.41KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"3.NLP","children":[{"title":"3.11 RNN创建文本","children":[{"title":"第十一章_练习.ipynb <span style='color:#111;'> 5.14KB </span>","children":null,"spread":false},{"title":"第十一章_练习参考答案.ipynb <span style='color:#111;'> 5.28KB </span>","children":null,"spread":false},{"title":"第十一章_第二课_文本预测_数据集.ipynb <span style='color:#111;'> 11.67KB </span>","children":null,"spread":false},{"title":"第十一章_第一课_文本预测_歌词.ipynb <span style='color:#111;'> 9.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"3.09 文本嵌入","children":[{"title":"第九章_第一课_可视化的IMDB分类.ipynb <span style='color:#111;'> 6.77KB </span>","children":null,"spread":false},{"title":"第九章_第二课_分类器的构建.ipynb <span style='color:#111;'> 7.80KB </span>","children":null,"spread":false},{"title":"第九章_练习参考答案.ipynb <span style='color:#111;'> 14.76KB </span>","children":null,"spread":false},{"title":"第九章_练习.ipynb <span style='color:#111;'> 13.75KB </span>","children":null,"spread":false},{"title":"第九章_第三课_预处理后数据集文本分类.ipynb <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"3.08 标记和序列","children":[{"title":"第八章_练习_参考答案.ipynb <span style='color:#111;'> 19.09KB </span>","children":null,"spread":false},{"title":"第八章_第一课_词条化.ipynb <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"第八章_第二课_序列化_句子.ipynb <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"第八章_第三课_序列化_数据集.ipynb <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"第八章_练习.ipynb <span style='color:#111;'> 16.87KB </span>","children":null,"spread":false}],"spread":true},{"title":"3.10 递归模型","children":[{"title":"第十章_第二课_使用池化层与LSTM区别.ipynb <span style='color:#111;'> 4.41KB </span>","children":null,"spread":false},{"title":"第十章_练习参考答案.ipynb <span style='color:#111;'> 11.14KB </span>","children":null,"spread":false},{"title":"第十章_第二课_多种模型的相互比较_轻量版.ipynb <span style='color:#111;'> 6.86KB </span>","children":null,"spread":false},{"title":"第十章_第二课_卷积层.ipynb <span style='color:#111;'> 4.55KB </span>","children":null,"spread":false},{"title":"第十章_第一课_多层GRU.ipynb <span style='color:#111;'> 5.21KB </span>","children":null,"spread":false},{"title":"第十章_第一课_多层LSTM_轻量版.ipynb <span style='color:#111;'> 8.24KB </span>","children":null,"spread":false},{"title":"第十章_第一课_单层LSTM_轻量版.ipynb <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false},{"title":"第十章_练习.ipynb <span style='color:#111;'> 10.90KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明