U-net去伪影深度学习算法(可运行自己的数据集)

上传者: 44603934 | 上传时间: 2022-12-06 17:26:46 | 文件大小: 119MB | 文件类型: RAR
该算法可以实现深度学习去除各类图像中的伪影。Unet 发表于 2015 年,属于 FCN 的一种变体。Unet 的初衷是为了解决生物医学图像的问题,由于效果确实很好后来也被广泛的应用在语义分割的各个方向,如卫星图像分割,工业瑕疵检测等。 Unet 跟 FCN 都是 Encoder-Decoder 结构,结构简单但很有效。 Encoder 负责特征提取,可以将各种特征提取网络放在这个位置。 Decoder 恢复原始分辨率,该过程比较关键的步骤就是 upsampling 与 skip-connection。 Unet主要可分为三部分来看分别为左(特征提取),中(拼接),右(上采样) 特征提取部分:它是一个收缩网络,通过四个下采样,使图片尺寸减小,在这不断下采样的过程中,特征提取到的是浅层信息。具体过程是,输入图片然后经过两个卷积核(3x3后面紧跟着一个Relu)以论文原图为例:输入572x572,经过两个卷积核(大小为3x3)大小从572-570-568,然后经过一个Maxpool(2x2)图片尺寸变为284这即为一个完整的下采样,接下来三个也是如此。在下采样的过程中,

文件下载

资源详情

[{"title":"( 2253 个子文件 119MB ) U-net去伪影深度学习算法(可运行自己的数据集)","children":[{"title":"transforms.py <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"test_004.jpg <span style='color:#111;'> 241.83KB </span>","children":null,"spread":false},{"title":"test_001.jpg <span style='color:#111;'> 187.53KB </span>","children":null,"spread":false},{"title":"dir.jpg <span style='color:#111;'> 13.73KB </span>","children":null,"spread":false},{"title":"test_003.jpg <span style='color:#111;'> 246.72KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明