使用 YOLO 前端和 Fast RCNN 后端的面罩检测模型

上传者: 44510615 | 上传时间: 2021-06-21 21:03:33 | 文件大小: 60.18MB | 文件类型: ZIP
这是一个使用 YOLO 前端和 Fast RCNN 后端的面罩检测模型。 我们使用 YOLO 的逐像素对象预测作为 Fast RCNN 的区域提议器。不同大小的像素(通过使用不同大小的过滤器)对应于这些位置不同大小的 RoI。这种架构是为人脸检测量身定制的,因为它最适合“方形”对象。 objectness>0.5 的位置被送入 Fast RCNN 后端,用于边界框回归和图像分类(如正确佩戴口罩、佩戴不当口罩、无口罩) 该模型建立在在 ImageNet 上预训练的 InceptionV3 之上 数据集取自 Kaggle

文件下载

资源详情

[{"title":"( 26 个子文件 60.18MB ) 使用 YOLO 前端和 Fast RCNN 后端的面罩检测模型","children":[{"title":"FacemaskDetection-master","children":[{"title":"models","children":[{"title":"PixelRPN_train_weights","children":[{"title":".index <span style='color:#111;'> 25.17KB </span>","children":null,"spread":false},{"title":".data-00000-of-00001 <span style='color:#111;'> 39.65MB </span>","children":null,"spread":false},{"title":"checkpoint <span style='color:#111;'> 59B </span>","children":null,"spread":false}],"spread":true},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"RCNN","children":[{"title":"variables","children":[{"title":"variables.data-00000-of-00001 <span style='color:#111;'> 11.70MB </span>","children":null,"spread":false},{"title":"variables.index <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"saved_model.pb <span style='color:#111;'> 682.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"GoogleNet.png <span style='color:#111;'> 2.81MB </span>","children":null,"spread":false},{"title":"PixelRPN","children":[{"title":"variables","children":[{"title":"variables.data-00000-of-00001 <span style='color:#111;'> 10.21MB </span>","children":null,"spread":false},{"title":"variables.index <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"saved_model.pb <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false}],"spread":true},{"title":"PixelRPN.png <span style='color:#111;'> 269.69KB </span>","children":null,"spread":false},{"title":"RCNN.png <span style='color:#111;'> 35.28KB </span>","children":null,"spread":false}],"spread":true},{"title":"HelperLib.py <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"ModelCreator.py <span style='color:#111;'> 23.95KB </span>","children":null,"spread":false},{"title":"ObtainProportion.py <span style='color:#111;'> 734B </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 681B </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 179B </span>","children":null,"spread":false},{"title":"PixelRPNTrainer.py <span style='color:#111;'> 10.48KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"RCNNTrainer.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 222B </span>","children":null,"spread":false},{"title":"RCNN region proposer.md <span style='color:#111;'> 286B </span>","children":null,"spread":false},{"title":"RCNNbuilder.ipynb <span style='color:#111;'> 480.48KB </span>","children":null,"spread":false},{"title":"DataReader.py <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"DataMaker.ipynb <span style='color:#111;'> 714.90KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明