Introduction to machine learning with python (内附code)

上传者: 44366059 | 上传时间: 2020-01-10 03:13:44 | 文件大小: 86.53MB | 文件类型: rar
作者:Andreas C. Müller & Sarah Guido 内附电子书PDF版本和全套code

文件下载

资源详情

[{"title":"( 58 个子文件 86.53MB ) Introduction to machine learning with python (内附code)","children":[{"title":"Introduction to Machine Learning with Python A Guide for Data Scientists","children":[{"title":"introduction-machine-learning-python.pdf <span style='color:#111;'> 24.37MB </span>","children":null,"spread":false},{"title":"Introduction to Machine Learning with Python A Guide for Data Scientists by A. C. Müller and S. Guido.pdf <span style='color:#111;'> 31.66MB </span>","children":null,"spread":false},{"title":"Code","children":[{"title":"07-working-with-text-data.ipynb <span style='color:#111;'> 492.16KB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"iris_petal_sepal.png <span style='color:#111;'> 674.50KB </span>","children":null,"spread":false},{"title":"dendrogram.png <span style='color:#111;'> 14.28KB </span>","children":null,"spread":false},{"title":"05_gridsearch_overview.png <span style='color:#111;'> 27.32KB </span>","children":null,"spread":false},{"title":"bag_of_words.png <span style='color:#111;'> 26.75KB </span>","children":null,"spread":false},{"title":"pipeline.svg <span style='color:#111;'> 35.90KB </span>","children":null,"spread":false},{"title":"overfitting_underfitting_cartoon.svg <span style='color:#111;'> 40.03KB </span>","children":null,"spread":false},{"title":"api_table.png <span style='color:#111;'> 22.10KB </span>","children":null,"spread":false},{"title":"overfitting_underfitting_cartoon.png <span style='color:#111;'> 10.60KB </span>","children":null,"spread":false},{"title":"bag_of_words.svg <span style='color:#111;'> 66.43KB </span>","children":null,"spread":false},{"title":"iris_petal_sepal.svg <span style='color:#111;'> 6.73MB </span>","children":null,"spread":false},{"title":"classifier_comparison.png <span style='color:#111;'> 499.84KB </span>","children":null,"spread":false},{"title":"pipeline.png <span style='color:#111;'> 27.63KB </span>","children":null,"spread":false}],"spread":false},{"title":"cover.jpg <span style='color:#111;'> 74.96KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"citibike.csv <span style='color:#111;'> 671.96KB </span>","children":null,"spread":false},{"title":"adult.data <span style='color:#111;'> 3.79MB </span>","children":null,"spread":false},{"title":"ram_price.csv <span style='color:#111;'> 5.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"04-representing-data-feature-engineering.ipynb <span style='color:#111;'> 4.92MB </span>","children":null,"spread":false},{"title":"08-conclusion.ipynb <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false},{"title":"05-model-evaluation-and-improvement.ipynb <span style='color:#111;'> 911.78KB </span>","children":null,"spread":false},{"title":"mglearn","children":[{"title":"plot_pca.py <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"plot_knn_classification.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"plot_knn_regression.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false},{"title":"tools.py <span style='color:#111;'> 4.69KB </span>","children":null,"spread":false},{"title":"plot_decomposition.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"plot_rbf_svm_parameters.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"plot_nmf.py <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false},{"title":"plot_nn_graphs.py <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"plot_scaling.py <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"plot_tree_nonmonotonous.py <span style='color:#111;'> 894B </span>","children":null,"spread":false},{"title":"plot_improper_preprocessing.py <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false},{"title":"plot_linear_svc_regularization.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"plot_interactive_tree.py <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"plot_kmeans.py <span style='color:#111;'> 5.66KB </span>","children":null,"spread":false},{"title":"plot_2d_separator.py <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"plot_dbscan.py <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"plot_linear_regression.py <span style='color:#111;'> 1005B </span>","children":null,"spread":false},{"title":"plot_grid_search.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"plot_animal_tree.py <span style='color:#111;'> 893B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 207B </span>","children":null,"spread":false},{"title":"plot_agglomerative.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"plot_kneighbors_regularization.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"plot_helpers.py <span style='color:#111;'> 3.05KB </span>","children":null,"spread":false},{"title":"make_blobs.py <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"plot_metrics.py <span style='color:#111;'> 4.04KB </span>","children":null,"spread":false},{"title":"plot_cross_validation.py <span style='color:#111;'> 8.71KB </span>","children":null,"spread":false},{"title":"plot_ridge.py <span style='color:#111;'> 1017B </span>","children":null,"spread":false}],"spread":false},{"title":".gitignore <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"03-unsupervised-learning.ipynb <span style='color:#111;'> 23.85MB </span>","children":null,"spread":false},{"title":"01-introduction.ipynb <span style='color:#111;'> 1.20MB </span>","children":null,"spread":false},{"title":"preamble.py <span style='color:#111;'> 774B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.03KB </span>","children":null,"spread":false},{"title":"06-algorithm-chains-and-pipelines.ipynb <span style='color:#111;'> 146.58KB </span>","children":null,"spread":false},{"title":"02-supervised-learning.ipynb <span style='color:#111;'> 13.52MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

  • lordcat :
    完美图文带书签,392页。附了一本旧的草稿版,没特殊需要的可以直接删了。
    2020-03-09

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明