Introduction to GDL (Michael Bronstein).pdf

上传者: 43909715 | 上传时间: 2022-08-03 20:05:35 | 文件大小: 215.06MB | 文件类型: PDF
过去几年里,深度学习在许多异质领域取得了令人印象深刻的成功:图像识别、游戏、生物学、自然语言处理,等等。然而,要真正理解这些成就背后的数学原理,我们还有很长的路要走。除了本身具有理论意义之外,理解为什么这些技术如此有效,肯定会提高它们的性能,扩大它们的应用领域。 几何深度学习(GDL)是一个很有前途的研究方向。GDL提出了一种统一的方法来理解为什么不同的体系结构(如CNN、LSTM、图神经网络、transformer)如此成功。强大的基本思想是,每当要逼近的函数被一组对称G不变/等变时,G不变/等变应该在体系结构中进行编码。例如,这就是为什么通过权值共享实现翻译等效的CNN在图像识别上工作得如此好,这是一个自然的翻译等效任务。 意大利第一所几何深度学习学校是位于意大利的第一所GDL强化学校。这将在意大利建立一个GDL社区,与其他欧洲国家建立联系,并最终促进GDL的研究。 一门有针对性的密集课程是使学生能够解决GDL的理想设置,否则这一领域将需要几个不同技能的单独训练,从群论和微分几何,到图论、概率论和深度学习。 目标受众包括计算机科学、数学、物理和统计专业的研究生,以及博士后和

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明