上传者: 43909715
|
上传时间: 2022-06-23 09:11:37
|
文件大小: 32.4MB
|
文件类型: RAR
CVPR 2022 线下会议将于 2022 年 6 月 21 日-24 日在美国新奥尔良举行。而今年投稿量创新高超过了一万,其中 2067 篇论文被接收。各位学者带来了一系列教程。来自卡内基梅隆大学研究学者讲述了《多模态机器学习》教程,200+页ppt值得关注。
多模态机器学习是一个充满活力的多学科研究领域,通过设计计算机agent来实现人工智能的一些原始目标,这些计算机agent能够通过集成和建模多种通信模态(包括语言、声学和视觉信息)来展示智能能力,如理解、推理和规划。随着视听语音识别的初步研究,以及最近的语言和视觉项目,如图像和视频字幕、视觉问题回答和语言引导强化学习,该研究领域给多模态研究人员带来了一些独特的挑战,因为数据的异质性和通常发现的模态之间的偶然性。
本教程建立在卡内基梅隆大学教授的多模态机器学习年度课程的基础上,是CVPR、ACL和ICMI会议上多模态学习以前教程的一个完全修订版本。本教程基于多模态机器学习中存在的核心技术挑战的修订分类,围绕这六个核心挑战: 表示、对齐、推理、迁移、生成和量化。最近的技术成果将通过这种多模态核心挑战的分类法来展示,使研究人员