Equilibrium Approaches to Modern Deep Learning.pdf

上传者: 43909715 | 上传时间: 2022-06-17 09:11:58 | 文件大小: 34.99MB | 文件类型: PDF
深度学习(Deep learning, DL)已经成为现代人工智能中最成功和被广泛采用的方法之一。与这些成功相伴而来的是越来越复杂和昂贵的架构设计,其基础是一个核心概念:层。本文对层次的这一基本作用提出了挑战,并深入介绍了一种新的、无层次的深度学习范式,将输出计算为动态系统的不动点:深度均衡(DEQ)模型。 首先,我们介绍深度均衡模型的一般公式。我们讨论了这些模型如何表达“无限级”的神经网络,向前和向后解耦传递,但与传统层的成本和设计复杂性-即使在一些最具竞争力的设置(例如,语言建模,语义分割等)。 其次,我们进一步讨论了这种均衡方式带来的挑战和机遇。我们表明,DEQ公式揭示了深度学习的许多新特性,这些特性长期以来被传统的层-堆叠方案所掩盖。利用它们,我们可以训练和部署这些新的轻量级均衡算法,大大补充了深度学习的现有发展,并使我们能够在最先进的水平上改善多个现有结果(例如,光流估计)。 DEQ方法已经在理论和实证两方面引领了社区内隐深度学习的新研究领域(例如,NeurIPS 2020教程)。因此,我们通过讨论未来的工作如何进一步利用这一平衡视角来构建更可扩展、高效和准确的下一代D

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明