Explainable Deep Learning Methods in Medical Diagnosis:A Survey.

上传者: 43909715 | 上传时间: 2022-05-16 11:05:41 | 文件大小: 4.21MB | 文件类型: PDF
深度学习的显著成功引发了人们对其在医学诊断中的应用的兴趣。即使最先进的深度学习模型在对不同类型的医疗数据进行分类时达到了人类水平的准确性,但这些模型在临床工作流程中很难被采用,主要是因为它们缺乏可解释性。深度学习模型的黑盒性提出了设计策略来解释这些模型的决策过程的需要,这导致了可解释人工智能(XAI)这个话题的产生。在此背景下,我们提供了XAI应用于医疗诊断的全面综述,包括可视化、文本和基于示例的解释方法。此外,这项工作回顾了现有的医学成像数据集和现有的指标,以评估解释的质量。作为对大多数现有综述的补充,我们包含了一组基于报告生成方法之间的性能比较。最后,还讨论了XAI在医学影像应用中的主要挑战。 https://www.zhuanzhi.ai/paper/f6e90091666dbcaa5b40c1ab82e9703b 引言 人工智能(AI)领域在过去十年取得的进展,支持了大多数计算机视觉应用的准确性的显著提高。医学图像分析是在对不同类型的医学数据(如胸部X光片[80]、角膜图像[147])进行分类时取得人类水平精确度的应用之一。然而,尽管有这些进展,自动化医学成像在临床实践中很少

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明