大规模图神经网络系统综述.pdf

上传者: 43909715 | 上传时间: 2022-01-23 09:15:26 | 文件大小: 3.57MB | 文件类型: PDF
图神经网络(GNN)是一类基于深度学习的处理图域信息的方法, 它通过将图广播操作和深度学习算法结合, 可以让图的结构信息和顶点属性信息都参与到学习中, 在顶点分类、图分类、链接预测等应用中表现出良好的效果和可解释性, 已成为一种广泛应用的图分析方法. 然而现有主流的深度学习框架(如TensorFlow、PyTorch等)没有为图神经网络计算提供高效的存储支持和图上的消息传递支持, 这限制了图神经网络算法在大规模图数据上的应用. 目前已有诸多工作针对图结构的数据特点和图神经网络的计算特点, 探索了大规模图神经网络系统的设计和实现方案. 首先对图神经网络的发展进行简要概述, 总结了设计图神经网络系统需要面对的挑战; 随后对目前图神经网络系统的工作进行介绍, 从系统架构、编程模型、消息传递优化、图分区策略、通信优化等多个方面对系统进行分析; 最后使用部分已开源的图神经网络系统进行实验评估, 从精确度、性能、扩展性等多个方面验证这些系统的有效性.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明