Data Augmentation Approaches in Natural Language Processing

上传者: 43909715 | 上传时间: 2021-10-18 22:10:51 | 文件大小: 2.24MB | 文件类型: PDF
哈工大最新《自然语言处理数据增强方法》综述论文,155页pdf阐述复述、噪声和抽样三大数据增强方法 数据增强(DA)是一种有效的策略,可以缓解深度学习技术可能失败的数据稀缺情况。它在计算机视觉中得到了广泛的应用,然后被引入到自然语言处理中,并在许多任务中取得了改进。DA方法的重点之一是提高训练数据的多样性,从而帮助模型更好地泛化到未见测试数据。在本研究中,我们根据扩充数据的多样性,将数据增强方法分为三大类,即复述、噪声和抽样。本文从以上几个方面对数据挖掘方法进行了详细的分析。此外,我们还介绍了它们在自然语言处理任务中的应用以及面临的挑战。 引言 数据增强(Data Augmentation,简称DA),是指根据现有数据,合成新数据的一类方法。毕竟数据才是真正的效果天花板,有了更多数据后可以提升效果、增强模型泛化能力、提高鲁棒性等。然而由于NLP任务天生的难度,类似CV的裁剪方法可能会改变语义,既要保证数据质量又要保证多样性,使得大家在做数据增强时十分谨慎。 作者根据生成样本的多样性程度,将DA方法分为了以下三种: Paraphrasing:对句子中的词、短语、句子结构做一些更改,保留原始的语义 Noising:在保证label不变的同时,增加一些离散或连续的噪声,对语义的影响不大 Sampling:旨在根据目前的数据分布选取新的样本,会生成更多样的数据

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明