深度学习培训PPT.rar

上传者: 43238426 | 上传时间: 2024-09-26 16:42:32 | 文件大小: 18.9MB | 文件类型: RAR
深度学习是一种人工智能领域的核心技术,它基于人工神经网络的模拟,通过大量数据的训练来自动学习特征,从而实现模式识别和预测。在当前的IT行业中,深度学习已经广泛应用于图像识别、自然语言处理、语音识别等领域。TensorFlow是Google开发的一个开源深度学习框架,它为研究人员和工程师提供了一个强大的平台,用于构建和部署大规模机器学习模型。 本压缩包"深度学习培训PPT.rar"包含了由专家陈力主讲的一系列深度学习课程讲义,主要围绕TensorFlow框架展开,同时也涉及到了深度学习的基础理论和实际应用。以下是这些文件的主要内容概览: 1. **陈力-1.深度卷积网络基本原理、结构与优化.pdf**:这份文档详细介绍了深度卷积网络(Convolutional Neural Networks, CNNs)的基本原理,包括卷积层、池化层、激活函数等关键组件,并探讨了网络的优化方法,如梯度下降、动量优化和Adam优化器。 2. **陈力-2.TensorFlow介绍与入门.pdf**:此讲义主要面向初学者,系统地介绍了TensorFlow的安装、环境配置,以及如何创建计算图、会话和变量。同时,还讲解了如何利用TensorFlow进行数据读取、预处理以及模型的构建和训练。 3. **陈力-3.深度卷积网络实践与讲解.pdf**:这一部分深入探讨了CNN在实际问题中的应用,可能包括图像分类、目标检测等任务,同时通过实例展示了如何在TensorFlow中实现这些网络架构。 4. **陈力-4.深度学习遥感图像检测.pdf**:遥感图像分析是深度学习的一个重要应用领域,这部分可能涵盖了使用CNN进行遥感图像目标检测的技术,包括Faster R-CNN、YOLO等前沿算法。 5. **陈力-5.*(新)网络框架演化和标注工具.pdf**:这部分可能讨论了深度学习网络框架的发展历程,以及常用的标注工具,如LabelImg等,这对于数据预处理和模型训练至关重要。 6. **陈力-6.深度学习遥感图像分割.pdf**:遥感图像分割是另一个关键应用,涉及到像素级别的分类,可能会介绍语义分割和实例分割的最新进展,如U-Net、Mask R-CNN等模型。 通过学习这些讲义,读者不仅可以掌握深度学习的基础知识,还能了解到TensorFlow的实际操作,以及深度学习在遥感图像分析领域的具体应用。这些材料对于想要提升深度学习技能的IT从业者或是科研人员来说,是非常宝贵的资源。

文件下载

资源详情

[{"title":"( 7 个子文件 18.9MB ) 深度学习培训PPT.rar","children":[{"title":"陈力-2.TensorFlow介绍与入门.pdf <span style='color:#111;'> 2.61MB </span>","children":null,"spread":false},{"title":"陈力-5.基础网络框架演化和标注工具.pdf <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"陈力-4.深度学习遥感图像检测.pdf <span style='color:#111;'> 2.20MB </span>","children":null,"spread":false},{"title":"陈力-5.(新)网络框架演化和标注工具.pdf <span style='color:#111;'> 3.54MB </span>","children":null,"spread":false},{"title":"陈力-6.深度学习遥感图像分割.pdf <span style='color:#111;'> 3.30MB </span>","children":null,"spread":false},{"title":"陈力-3.深度卷积网络实践与讲解.pdf <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"陈力-1.深度卷积网络基本原理、结构与优化.pdf <span style='color:#111;'> 5.16MB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明