基于用户的协同过滤推荐算法研究与实现

上传者: 43093901 | 上传时间: 2021-03-29 20:07:16 | 文件大小: 107.04MB | 文件类型: ZIP
系统功能模块划分和说明 一、用户登陆注册模块 二、音乐分类管理 三、音乐管理 四、音乐收藏管理 五、角色管理 六、系统管理 七、个人信息管理 八、推荐模块 协同过滤推荐算法 协同过滤常常被用于分辨某位特定顾客可能感兴趣的东西,这些结论来自于对其他相似顾客对哪些产品感兴趣的分析。协同过滤以其出色的速度和健壮性,在全球互联网领域炙手可热。 协同过滤推荐(Collaborative Filtering recommendation)是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用 户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。 与传统文本过滤相比,协同过滤有下列优点: (1)能够过滤难以进行机器自动基于内容分析的信息。如艺术品、音乐; (2)能够基于一些复杂的,难以表达的概念(信息质量、品位)进行过滤; (3)推荐的新颖性。 正因为如此,协同过滤在商业应用上也取得了不错的成绩。Amazon,CDNow,MovieFinder,都采用了协同过滤的技术来提高服务质量。 缺点是: (1)用户对商品的评价非常稀疏,这样基于用户的评价所得到的用户间的相似性可能不准确(即稀疏性问题); (2)随着用户和商品的增多,系统的性能会越来越低; (3)如果从来没有用户对某一商品加以评价,则这个商品就不可能被推荐(即最初评价问题)。 因此,现在的电子商务推荐系统都采用了几种技术相结合的推荐技术。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明