nilmtk-contrib-master.zip

上传者: 42923190 | 上传时间: 2021-04-23 18:17:48 | 文件大小: 115KB | 文件类型: ZIP
序列到点网络nilm,即基于序列到点的深度CNN神经网络,进行非侵入式负荷分解

文件下载

资源详情

[{"title":"( 15 个子文件 115KB ) nilmtk-contrib-master.zip","children":[{"title":"nilmtk-contrib-master","children":[{"title":".gitignore <span style='color:#111;'> 268B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"sample_notebooks","children":[{"title":"NILMTK API Tutorial.ipynb <span style='color:#111;'> 28.52KB </span>","children":null,"spread":false},{"title":"Using the API with NILMTK-CONTRIB.ipynb <span style='color:#111;'> 114.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"disaggregate","children":[{"title":"rnn.py <span style='color:#111;'> 8.21KB </span>","children":null,"spread":false},{"title":"afhmm_sac.py <span style='color:#111;'> 11.99KB </span>","children":null,"spread":false},{"title":"seq2seq.py <span style='color:#111;'> 9.22KB </span>","children":null,"spread":false},{"title":"seq2point.py <span style='color:#111;'> 8.29KB </span>","children":null,"spread":false},{"title":"disaggregator.py <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"WindowGRU.py <span style='color:#111;'> 7.66KB </span>","children":null,"spread":false},{"title":"afhmm.py <span style='color:#111;'> 10.16KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 261B </span>","children":null,"spread":false},{"title":"fhmm_exact.py <span style='color:#111;'> 10.09KB </span>","children":null,"spread":false},{"title":"dae.py <span style='color:#111;'> 9.54KB </span>","children":null,"spread":false},{"title":"dsc.py <span style='color:#111;'> 9.29KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明