上传者: 42403632
|
上传时间: 2025-08-29 09:59:27
|
文件大小: 21.37MB
|
文件类型: PDF
大型语言模型是一类通过深度学习技术训练得到的能够处理自然语言任务的复杂神经网络模型。这些模型能够理解、生成或转换自然语言文本,为各种应用提供了强大的支持。Jay Alammar和Maarten Grootendorst在他们的著作《动手学大语言模型》中,提供了对这一领域深入浅出的介绍和实践指南。这本书对于行业内的实际应用有着非常重要的指导意义,书中采用了高度视觉化的介绍方式,覆盖了语言模型在生成、表示和检索等应用方面,这使得读者能够迅速地理解和掌握这些模型的使用与优化。
本书得到业界的广泛赞誉。例如,Nils Reimers(Cohere机器学习总监兼sentence-transformers的创造者)认为这本书是理解语言模型实用技术的一个宝贵资源。Andrew Ng(深度学习AI的创始人)也对此书给予了高度评价,认为它包含着插图和代码等元素,使得复杂主题变得易于理解。Josh Starmer(StatQuest的创始人)表示,在这本书的每一页上,他都能学到在当前语言模型时代取得成功所必需的知识。Luis Serrano(Serrano Academy的创始人兼CEO)则强调了这本书在算法进化、理论严格性和实用指导方面的结合,使之成为对任何对生成式人工智能感兴趣的读者来说必不可少的读物。
《动手学大语言模型》不仅提供了深入浅出的理论知识,还通过丰富的实例和全面的代码实验室,带领读者深入了解转换器模型、标记器、语义搜索、RAG等尖端技术的工作原理。读者通过阅读这本书,将能够从语言模型的历史和最新进展中迅速成长,成为一名专家。此外,书中内容涵盖了文本和视觉嵌入的融合,这为想要提升在生成式AI领域的知识水平的读者提供了丰富的案例研究和解决方案。
本书强调了大型语言模型的实践应用和重要性,随着人工智能技术的快速发展,掌握这些知识变得日益重要。无论读者是学生、研究者还是行业专业人士,这本书都能为其提供所需的实用知识和使用案例,帮助他们更有效地使用和提升对生成式AI的理解。