Machine-Learning-R:使用机器学习和统计分析技术的端到端营销和业务分析项目,使用 R 编程语言

上传者: 42181319 | 上传时间: 2022-05-20 19:55:16 | 文件大小: 20.03MB | 文件类型: ZIP
机器学习 此存储库包含与使用 R 编程语言的营销和业务分析问题相关的项目。 机器学习可以显着提高营销绩效。 项目 1:营销活动优化 - 我们能否确定要定位的正确客户? 第一个项目的目标是提高银行的活动营销响应率。 营销部门需要了解什么是重要的。 我们如何将资源分配给更有可能响应的客户。 这是一个经典的二元分类问题。 我们有转换或未转换的客户。 在这个项目中,我通过逻辑回归和决策树来预测营销响应率。 通过此模型的输出,营销部门可以获得与过去营销活动成功转化的客户相似的客户资料。 这是我要发送给营销部门的个人资料。 Marketing should contact customers with these characteristics: 1. marital status - single 2. education - tertiary 3. had respond

文件下载

资源详情

[{"title":"( 24 个子文件 20.03MB ) Machine-Learning-R:使用机器学习和统计分析技术的端到端营销和业务分析项目,使用 R 编程语言","children":[{"title":"Machine-Learning-R-master","children":[{"title":"3A.IBM Watson Marketing AB Test - ANOVA model.R <span style='color:#111;'> 7.77KB </span>","children":null,"spread":false},{"title":"2.Predict Magazine Subscription Behavior - Logistic Regression.R <span style='color:#111;'> 15.96KB </span>","children":null,"spread":false},{"title":"7. Customer Lifetime Value Modeling with OLS and Bayesian Linear Regression.Rmd <span style='color:#111;'> 11.86KB </span>","children":null,"spread":false},{"title":"1.Predict Bank Mktg Campaign Response-Logistic Regression & Decision Tree Models.R <span style='color:#111;'> 31.81KB </span>","children":null,"spread":false},{"title":"6.Customer Churn Analysis - Logistic Regression & Random Forest Models.Rmd <span style='color:#111;'> 39.23KB </span>","children":null,"spread":false},{"title":"6.Customer Churn Analysis - Logistic Regression & Random Forest Models.nb.html <span style='color:#111;'> 909.43KB </span>","children":null,"spread":false},{"title":"5.Facebook Performance - Clustering.R <span style='color:#111;'> 28.47KB </span>","children":null,"spread":false},{"title":"4.Predict Online Shoppers Intent - Logistic Regression.R <span style='color:#111;'> 20.79KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 7.30KB </span>","children":null,"spread":false},{"title":"rsconnect","children":[{"title":"documents","children":[{"title":"IBM Watson Marketing AB Test Results Evaluation.Rmd","children":[{"title":"rpubs.com","children":[{"title":"rpubs","children":[{"title":"Document.dcf <span style='color:#111;'> 356B </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true},{"title":"3B.IBM Watson Marketing AB Test Results Evaluation - ANOVA and post-hoc tests.Rmd <span style='color:#111;'> 8.06KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"7. Customer Lifetime Value Modeling with OLS and Bayesian Linear Regression.nb.html <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"dataset_Facebook.csv <span style='color:#111;'> 36.51KB </span>","children":null,"spread":false},{"title":"bank-additional-full.csv <span style='color:#111;'> 5.53MB </span>","children":null,"spread":false},{"title":"bank-full.csv <span style='color:#111;'> 4.40MB </span>","children":null,"spread":false},{"title":"Telco-Customer-Churn.csv <span style='color:#111;'> 947.71KB </span>","children":null,"spread":false},{"title":"ad-prices.csv <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"bank_full.xlsx <span style='color:#111;'> 4.00MB </span>","children":null,"spread":false},{"title":"online_retail_2009.csv <span style='color:#111;'> 40.82MB </span>","children":null,"spread":false},{"title":"subscribed_data.csv <span style='color:#111;'> 9.21KB </span>","children":null,"spread":false},{"title":"bank.csv <span style='color:#111;'> 450.66KB </span>","children":null,"spread":false},{"title":"online_retail_2010.csv <span style='color:#111;'> 41.92MB </span>","children":null,"spread":false},{"title":"online_shoppers_intention.csv <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明