[{"title":"( 24 个子文件 20.03MB ) Machine-Learning-R:使用机器学习和统计分析技术的端到端营销和业务分析项目,使用 R 编程语言","children":[{"title":"Machine-Learning-R-master","children":[{"title":"3A.IBM Watson Marketing AB Test - ANOVA model.R <span style='color:#111;'> 7.77KB </span>","children":null,"spread":false},{"title":"2.Predict Magazine Subscription Behavior - Logistic Regression.R <span style='color:#111;'> 15.96KB </span>","children":null,"spread":false},{"title":"7. Customer Lifetime Value Modeling with OLS and Bayesian Linear Regression.Rmd <span style='color:#111;'> 11.86KB </span>","children":null,"spread":false},{"title":"1.Predict Bank Mktg Campaign Response-Logistic Regression & Decision Tree Models.R <span style='color:#111;'> 31.81KB </span>","children":null,"spread":false},{"title":"6.Customer Churn Analysis - Logistic Regression & Random Forest Models.Rmd <span style='color:#111;'> 39.23KB </span>","children":null,"spread":false},{"title":"6.Customer Churn Analysis - Logistic Regression & Random Forest Models.nb.html <span style='color:#111;'> 909.43KB </span>","children":null,"spread":false},{"title":"5.Facebook Performance - Clustering.R <span style='color:#111;'> 28.47KB </span>","children":null,"spread":false},{"title":"4.Predict Online Shoppers Intent - Logistic Regression.R <span style='color:#111;'> 20.79KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 7.30KB </span>","children":null,"spread":false},{"title":"rsconnect","children":[{"title":"documents","children":[{"title":"IBM Watson Marketing AB Test Results Evaluation.Rmd","children":[{"title":"rpubs.com","children":[{"title":"rpubs","children":[{"title":"Document.dcf <span style='color:#111;'> 356B </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true},{"title":"3B.IBM Watson Marketing AB Test Results Evaluation - ANOVA and post-hoc tests.Rmd <span style='color:#111;'> 8.06KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"7. Customer Lifetime Value Modeling with OLS and Bayesian Linear Regression.nb.html <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"dataset_Facebook.csv <span style='color:#111;'> 36.51KB </span>","children":null,"spread":false},{"title":"bank-additional-full.csv <span style='color:#111;'> 5.53MB </span>","children":null,"spread":false},{"title":"bank-full.csv <span style='color:#111;'> 4.40MB </span>","children":null,"spread":false},{"title":"Telco-Customer-Churn.csv <span style='color:#111;'> 947.71KB </span>","children":null,"spread":false},{"title":"ad-prices.csv <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"bank_full.xlsx <span style='color:#111;'> 4.00MB </span>","children":null,"spread":false},{"title":"online_retail_2009.csv <span style='color:#111;'> 40.82MB </span>","children":null,"spread":false},{"title":"subscribed_data.csv <span style='color:#111;'> 9.21KB </span>","children":null,"spread":false},{"title":"bank.csv <span style='color:#111;'> 450.66KB </span>","children":null,"spread":false},{"title":"online_retail_2010.csv <span style='color:#111;'> 41.92MB </span>","children":null,"spread":false},{"title":"online_shoppers_intention.csv <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]