FedProx:异构网络中的联合优化(MLSys '20)-源码

上传者: 42172204 | 上传时间: 2021-10-24 21:46:27 | 文件大小: 19.3MB | 文件类型: -
异构网络中的联合优化 该存储库包含本文的代码和实验: 联合学习是一种分布式学习范例,它具有两个与传统的分布式优化不同的关键挑战:(1)网络中每个设备的系统特性方面的显着可变性(系统异质性),以及(2)不完全相同的分布式数据跨网络(统计异质性)。 在这项工作中,我们引入一个框架FedProx,从理论上和经验上解决联邦网络中的异构性。 该存储库包含一组针对联合数据集的详细的经验评估。 我们证明FedProx比FedAvg具有更强大的收敛性。 特别是,在高度异构的环境中,FedProx展示了相对于FedAvg而言更加稳定和准确的收敛行为-将绝对测试准确度平均提高了22%。 一般准则 请注意,如果您想使用FedProx作为基准并运行我们的代码: 如果使用不同的数据集,则至少需要根据您的指标调整学习率和mu参数。 您可能希望从{0.001,0.01,0.1,0.5,1}调整mu。 没有适用于所有

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明