多分类相关向量机.zip

上传者: 42170371 | 上传时间: 2021-05-20 15:52:19 | 文件大小: 92KB | 文件类型: ZIP
可以用来多分类的相关向量机RVM,是基于贝叶斯框架构建学习机,是一种新的监督学习方法,可作为分类器和回归。其优势在于,RVM的准确率近似于SVM,但是RVM训练时间短。

文件下载

资源详情

[{"title":"( 52 个子文件 92KB ) 多分类相关向量机.zip","children":[{"title":"多分类相关向量机","children":[{"title":"__MACOSX","children":[{"title":"mRVMs","children":[{"title":"._train_mRVM2.m <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"._predict_mRVM.m <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"._cv_mRVM1_MKL.m <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"._chol_inv.m <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"._.DS_Store <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"._cv_mRVM2.m <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"._mRVM_train_output.m <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"._train_mRVM1.m <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"._safenormcdf.m <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"._cv_mRVM1.m <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"._cv_mRVM2_MKL.m <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"._train_mRVM1_MKL.m <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"._predict_mRVM_MKL.m <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"._standardize_data.m <span style='color:#111;'> 171B </span>","children":null,"spread":false},{"title":"._postW_map.m <span style='color:#111;'> 82B </span>","children":null,"spread":false},{"title":"._train_mRVM2_MKL.m <span style='color:#111;'> 82B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"mRVMs","children":[{"title":"YTruncate.m <span style='color:#111;'> 941B </span>","children":null,"spread":false},{"title":"test_figure.m <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"aa.mat <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"ttrain0.mat <span style='color:#111;'> 190B </span>","children":null,"spread":false},{"title":"Xtrain.mat <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"cv_mRVM1.m <span style='color:#111;'> 6.59KB </span>","children":null,"spread":false},{"title":"ttrain.mat <span style='color:#111;'> 187B </span>","children":null,"spread":false},{"title":"predict_mRVM_MKL.m <span style='color:#111;'> 7.78KB </span>","children":null,"spread":false},{"title":"safenormcdf.m <span style='color:#111;'> 73B </span>","children":null,"spread":false},{"title":"train_mRVM2_MKL.m <span style='color:#111;'> 10.92KB </span>","children":null,"spread":false},{"title":"safenormpdf.m <span style='color:#111;'> 103B </span>","children":null,"spread":false},{"title":"chol_inv.m <span style='color:#111;'> 649B </span>","children":null,"spread":false},{"title":"standardize_data.m <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"test1.m <span style='color:#111;'> 723B </span>","children":null,"spread":false},{"title":"Xtrain0.mat <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"updateY.m <span style='color:#111;'> 795B </span>","children":null,"spread":false},{"title":"train_mRVM1_MKL.m <span style='color:#111;'> 20.32KB </span>","children":null,"spread":false},{"title":"iris.mat <span style='color:#111;'> 4.71KB </span>","children":null,"spread":false},{"title":"test_figure.asv <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"cv_mRVM2_MKL.m <span style='color:#111;'> 7.27KB </span>","children":null,"spread":false},{"title":"cv_mRVM2.m <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"iris_MKL.mat <span style='color:#111;'> 14.92KB </span>","children":null,"spread":false},{"title":"readme.doc <span style='color:#111;'> 39.00KB </span>","children":null,"spread":false},{"title":"predict_mRVM.m <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"iris2.mat <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"train_mRVM1.m <span style='color:#111;'> 17.71KB </span>","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 7.37KB </span>","children":null,"spread":false},{"title":"train_mRVM2.m <span style='color:#111;'> 8.35KB </span>","children":null,"spread":false},{"title":"Xtrain1.mat <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"cv_mRVM1_MKL.m <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"build_standarized_kernel.m <span style='color:#111;'> 876B </span>","children":null,"spread":false},{"title":"kernel_function.m <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"mRVM_train_output.m <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"postW_map.m <span style='color:#111;'> 621B </span>","children":null,"spread":false},{"title":"postA.m <span style='color:#111;'> 826B </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

  • HusterMing :
    Matlab版本的
    2020-11-14

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明