[{"title":"( 32 个子文件 1.89MB ) Efficient-GP-Regression-via-Kalman-Filtering:通过迭代卡尔曼滤波实现有效的时空高斯过程回归的代码。 KF用于解析时空过程的时间部分,而标准GP回归用于空间部分","children":[{"title":"Efficient-GP-Regression-via-Kalman-Filtering-master","children":[{"title":"functions","children":[{"title":"trackme.txt <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"nonparametricPrediction.m <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"kalmanEst.m <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"generateSyntheticData.m <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"createDiscreteTimeSys.m <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"npEst.m <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"nonparametricEstimation.m <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"kernelFunction.m <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"kernelSampled.m <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"gpkfPrediction.m <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"gpkfEstimation.m <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":"kernelSpaceTimeSampled.m <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"loadDataSet.m <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"npPred.m <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"loadColoradoData.m <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false}],"spread":false},{"title":"main.m <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"plotResults.m <span style='color:#111;'> 4.69KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"gaussian_time_kernel_approximations","children":[{"title":"ssDim=2_for_scale=1_std=1.mat <span style='color:#111;'> 257B </span>","children":null,"spread":false},{"title":"trackme.txt <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"ssDim=4_for_scale=1_std=1.mat <span style='color:#111;'> 291B </span>","children":null,"spread":false},{"title":"ssDim=5_for_scale=1_std=1.mat <span style='color:#111;'> 307B </span>","children":null,"spread":false},{"title":"ssDim=6_for_scale=1_std=1.mat <span style='color:#111;'> 324B </span>","children":null,"spread":false},{"title":"ssDim=3_for_scale=1_std=1.mat <span style='color:#111;'> 274B </span>","children":null,"spread":false},{"title":"ssDim=1_for_scale=1_std=1.mat <span style='color:#111;'> 230B </span>","children":null,"spread":false}],"spread":true},{"title":"datasets","children":[{"title":"trackme.txt <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"colorado.mat <span style='color:#111;'> 423.99KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 34.32KB </span>","children":null,"spread":false},{"title":"loadParameters.m <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false},{"title":"papers","children":[{"title":"trackme.txt <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"2017_Todescato_Efficient-Space-Time-GP-Regression-via-KF_ArXiv.pdf <span style='color:#111;'> 1.51MB </span>","children":null,"spread":false},{"title":"2016_Carron_ML-meets-KF_CDC.pdf <span style='color:#111;'> 366.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]