deep-hedging:深度对冲演示-使用机器学习进行衍生定价的示例

上传者: 42169245 | 上传时间: 2022-07-27 14:03:14 | 文件大小: 487KB | 文件类型: ZIP
深度对冲演示 使用机器学习对衍生产品定价 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run python ./pyqt5/main.py Check ./requirements.txt for main dependencies. Black-Scholes(BS)模型-于1973年开发,并基于获得诺贝尔奖的作品-在近半个世纪以来一直是定价选择和其他金融衍生品的事实上的标准。 在理想的金融市场的假设下,可以使用该模型来计算期权价格和相关的风险敏感性。 然后,交易者可以从理论上使用这些风险敏感性来创建完善的对冲策略,以消除期权组合中的所有风险。 但是,在现实世界中很难满足完美金融市场的必要条件,例如零交易成本和连续交易的可能性。 因此,在实践中,银行必须依靠其交

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明