Curriculum-Reinforcement-Learning:解决障碍目标导向机器人任务的新型强化学习方法-源码

上传者: 42168830 | 上传时间: 2022-03-05 19:24:53 | 文件大小: 342.92MB | 文件类型: -
CuRL-针对目标机器人控制的课程强化学习 我的MEng在计算(人工智能)最终项目中的代码档案,报告- 。 该项目的主要成果是CuRL-一种用于培训政策以完成面向目标的机器人任务的方法,而最新的深度强化学习则很难解决这些问题。 通过使用简单任务的课程表,我们逐步指导一项政策,使其能够完成所需的完整任务。 上图有助于说明该方法。 我们的目标是训练机器人在避开墙壁的情况下到达目标球体。 从头开始使用强化学习的最新方法将很难学会克服困难。 在项目报告中对此进行了更详细的说明。 通过课程强化学习,我们最初会移除墙壁,并且机器人可以学习沿红色轨迹移动。 通过顺序添加墙的“部分”(用彩色同心圆表示),我们可以指导策略,以便机器人学习遵循所需的绿色轨迹。 本文介绍的最终方法及其早期版本需要对RL算法的基线实现进行重大更改,尤其是为了支持残余策略培训。 我希望这里提供的代码可以帮助其他从事类似项目

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明