speech-enhancement-dns-comparison:语音增强深度学习架构比较-源码

上传者: 42168745 | 上传时间: 2021-10-05 17:22:16 | 文件大小: 109.86MB | 文件类型: -
用于单通道语音增强的深噪声抑制模型的比较评估 考虑到视频会议系统和流传输工具的日益增加的使用,具有计算有效和有效的语音增强器变得有利和必要。 Microsoft DNS挑战极大地促进了该领域的创新,但仍有很大的改进空间。 这项工作比较了此挑战中提出的两种用于语音增强的深度学习模型:NSNet2和双信号转换LSTM网络(DTLN)。 在基于混响时间RT60和信噪比(SNR)规范的两种对比条件下,分别使用两个数据集和三种不同的以语音质量为中心的措施对这两种模型进行了比较:语音质量的感知评估(PESQ),深噪声抑制平均意见分数(DNSMOS)和虚拟语音质量目标听众(ViSQOL)。 概述 这是“单声道语音增强的深噪声抑制模型的比较评估”研究报告的伴随代码,该研究由EstebanGómez进行,该研究是巴塞罗那Pompeu Fabra大学的声音和音乐计算硕士学位的学生,是音乐信息的一部分检索过程。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明