endolas:内窥镜激光3D成像的关键点检测-源码

上传者: 42168555 | 上传时间: 2021-11-08 17:20:29 | 文件大小: 127.7MB | 文件类型: -
结构化光内窥镜中基于特征的图像配准 该存储库包含基于深度学习的图像配准,用于结构化光内窥镜检查。 该方法是通过使用喉部记录对激光投射的关键点(功能)进行分类而开发的。 该方法包含一个预处理步骤,在该步骤中执行语义分割以定位关键点。 然后执行图像配准,以将不规则放置的关键点转换为规则放置的图案。 在后处理步骤中,使用最近邻居方法和排序算法对各个关键点进行分类。 实现驻留在包endolas(内镜检查+拉斯ER)和示范在演示提供。 此外,该数据集LASTEN,其用于训练和评估在数据中给出。 安装 下载资源库。 激活所需的python环境,该环境至少包含Python 3.7。 在存储库中,使用以下命令运行setup.py: pip install . 现在,将endolas软件包安装在您的环境中,包括资源和其他必需的软件包。 演示版 管道可以根据图像对关键点进行预测,方法如下: 'jupy

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明